User Guide
DN8000K10PCIEe
TABLE OF CONTENTS

ABOUT THIS MANUAL

1. **MANUAL CONTENTS**

2. **ADDITIONAL RESOURCES**

3. **CONVENTIONS**
 - 3.1 **TYPOGRAPHICAL**
 - 3.2 **CONTENT**
 - 3.2.1 **File names**
 - 3.2.2 **Physical orientation and Origin**
 - 3.2.3 **Part Pin Names**
 - 3.2.4 **Schematic Clippings**
 - 3.2.5 **Terminology**

4. **FPGA DESIGN GUIDE**
 - 4.1 **CONTROLLER SOFTWARE**
 - 4.2 **BOARD HARDWARE**
 - 4.3 **ADDITIONAL RESOURCES**

5. **ABOUT THIS MANUAL**

6. **QUICK START GUIDE**

7. **TABLE OF CONTENTS**

ADDITIONAL RESOURCES

PROVIDED MATERIALS

ESD WARNING

POWER-ON INSTRUCTIONS
 - 3.1 **MEMORY AND HEATSINKS**
 - 3.2 **PREPARE CONFIGURATION FILES**
 - 3.3 **CONNECT CABLES**
 - 3.3.1 **Watch the configuration status output**
 - 3.3.2 **Interactive configuration**
 - 3.3.3 **Read temperature sensors**
 - 3.3.4 **Multiplex Serial port**
 - 3.4 **CHECK LED STATUS LIGHTS**

USING THE REFERENCE DESIGN WITH THE PROVIDED SOFTWARE
 - 4.1 **OPERATING THE USB CONTROLLER PROGRAM**
 - 4.2 **COMMUNICATING TO THE USER DESIGN OVER THE SERIAL PORT**
 - 4.3 **USING AETEST TO RUN HARDWARE TESTS**
 - 4.3.1 **AETest on Linux or Solaris**
 - 4.3.2 **Use AETest**
 - 4.4 **MOVING ON**
Chapter 1

About This Manual

Welcome to DN8000K10PCIE Logic Emulation Board

Congratulations on your purchase of the DN8000K10PCIE Logic Emulation Board. If you are unfamiliar with Dini Group products, you should read Chapter 2, Quick Start Guide to familiarize yourself with the user interfaces the DN8000K10PCIE provides.

Figure 1 DN8000K10PCIE
1 Manual Contents

This manual contains the following chapters:

About This Manual
List of available documentation and resources available. Reader’s Guide to this manual

Quick Start Guide
Step-by-step instructions for powering on the DN8000K10PCIE, loading and communicating with a simple provided FPGA design and using the board controls.

Board Hardware
Detailed description and operating instructions of each individual circuit on the DN8000K10PCIE

Controller Software
A summary of the functionality of the provided software. Implementation details for the remote USB board control functions and instructions for developing your own USB host software.

Reference Design
Detailed description of the provided DN8000K10PCIE reference design. Implementation details of the reference design interaction with DN8000K10PCIE hardware features.

FPGA Design Guide
Information needed to use the DN8000K10PCIE with third-party software, including Xilinx ISE, Certify, and Identify. Some commonly asked questions and problems specific to the DN8000K10PCIE

Ordering Information
Contains a list of the available options and available optional equipment. Some suggested parts and equipment available from third party vendors.

2 Additional Resources

For additional information, go to http://www.dinigroup.com. The following table lists some of the resources you can access from this website. You can also directly access these resources using the provided URLs.
3 Conventions

This document uses the following conventions. An example illustrates each convention.

3.1 Typographical

The following typographical conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning or Use</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courier font</td>
<td>Messages, prompts, and program files that the system displays</td>
<td>speed grade: -100</td>
</tr>
<tr>
<td>Courier bold</td>
<td>Literal commands that you enter in a syntactical statement</td>
<td>ngdbuild design_name</td>
</tr>
<tr>
<td>Garamond bold</td>
<td>Commands that you select from a menu</td>
<td>File ➔ Open</td>
</tr>
<tr>
<td></td>
<td>Keyboard shortcuts</td>
<td>Ctrl+C</td>
</tr>
<tr>
<td>Convention</td>
<td>Meaning or Use</td>
<td>Example</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Italic font</td>
<td>Variables in a syntax statement for which you must supply values</td>
<td>ngdbuild <code>design_name</code></td>
</tr>
<tr>
<td></td>
<td>References to other manuals</td>
<td>See the Development System Reference Guide for more information.</td>
</tr>
<tr>
<td></td>
<td>Emphasis in text</td>
<td>If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not connected.</td>
</tr>
<tr>
<td>Braces <code>[]</code></td>
<td>An optional entry or parameter. However, in bus specifications, such as bus[7:0], they are required.</td>
<td>ngdbuild <code>[option_name]</code> <code>design_name</code></td>
</tr>
<tr>
<td>Braces <code>{ }</code></td>
<td>A list of items from which you must choose one or more</td>
<td>`lowpwr = {on</td>
</tr>
<tr>
<td>Vertical bar `</td>
<td>`</td>
<td>Separates items in a list of choices</td>
</tr>
<tr>
<td>Vertical ellipsis <code>- </code></td>
<td>Repetitive material that has been omitted</td>
<td>IOB #1: Name = QOUT” IOB #2: Name = CLBIN’ <code>- </code> <code> </code>- `</td>
</tr>
<tr>
<td>Horizontal ellipsis <code>...</code></td>
<td>Repetitive material that has been omitted</td>
<td><code>allow block block_name</code> <code>loc1 loc2 ... locn;</code></td>
</tr>
<tr>
<td>Prefix “0x” or suffix “h”</td>
<td>Indicates hexadecimal notation</td>
<td>Read from address <code>0x00110373</code>, returned 4552494h</td>
</tr>
<tr>
<td>Letter “#” or “_n”</td>
<td>Signal is active low</td>
<td>INT# is active low <code>fpga_inta_n</code> is active low</td>
</tr>
</tbody>
</table>

3.2 Content
3.2.1 File names
Paths to documents included on the User CD are prefixed with “D: \”. This refers to your CD drive’s root directory.
3.2.2 Physical orientation and Origin
By convention, the board is oriented as show on page 3, with the “top” of the board being the edge near Headers A and B, and the edge with the optical module connectors. The “right” edge is near the SMA connectors, the “left” side is the side with the PCI bezel. “topside” refers to the side of the PWB with FPGAs soldered to it, “backside” is the side with the daughtercard connectors. The reference origin of the board is the center of the lower PCI bezel mounting hole.

3.2.3 Part Pin Names
Pin names are given in the form <X><Y><Z>; The <X> is one of: U for ICs, R for resistors, C for capacitors, P or J for connectors, FB or L for inductors, TP for test points, MH for mounting structures, FD for fiducials, BT for sockets, DS for diodes, F for fuses, HS for mechanicals, PSU for power supply modules, Q for discreet semiconductors, RN for resistor networks, X for oscillators, Y for crystals. <Y> is a number uniquely identifying each part from other parts of the same X class on the same PWB. <Z> is the pin or terminal number or name, as defined in the datasheet of the part. Datasheets for all standard and optional parts used on the DN8000K10PCIE are included in the Document library on the provided User CD.

3.2.4 Schematic Clippings
Partial schematic drawings are included in this document to aid quick understanding of the features of the DN8000K10PCIE. These clippings have been modified for clarity and brevity, and may have omitted parts and connections. Unmodified Schematics are included in the User CD. Please refer to this document. Use the PDF search feature to search for nets and parts.

3.2.5 Terminology
Abbreviations and pronouns are used for some commonly used phrases.

MGT and RocketIO are used interchangeably. MGT is multi-gigabit transceiver. RocketIO is the Xilinx trademark on their multi gigabit transceiver hardware.

MCU is the Cypress FX2 Microcontroller, U39
Quick Start Guide

The Dini Group DN8000K10PCIE is the user-friendliest board available with multiple Virtex 4 FPGAs. However, due to the number of features and flexibility of the board, it will take some time to become familiar with all the control and monitoring interfaces equipped on the DN8000K10PCIE. Please follow this quick start guide to become familiar with the board before starting your ASIC emulation project.

1 Provided Materials

Examine the contents of your DN8000K10PCIE kit. It should contain:

- DN8000K10PCIE board
- Two Smart Media cards or one CompactFlash card
- USB SmartMedia card reader
- RS232 IDC header cable to female DB9
- USB cable
- CD ROM containing:
 - Virtex 4 Reference Design
 - User manual PDF
 - Board Schematic PDF
 - USB program (usbcontroller.exe)
 - Source code for USB program, and DN8000K10PCIE firmware
2 ESD Warning

The DN8000K10PCIE is sensitive to static electricity, so treat the PCB accordingly. The target markets for this product are engineers that are familiar with FPGAs and circuit boards. However, if needed, the following web page has an excellent tutorial on the “Fundamentals of ESD” for those of you who are new to ESD sensitive products:

http://www.esda.org/basics/part1.cfm

There are two large grounded metal rails on the DN8000K10PCIE.

The DN8000K10PCIE has been factory tested and pre-programmed to ensure correct operation. You do not need to alter any jumpers or program anything to see the board work. A reference design is included on the provided CD and SmartMedia card.

The 200-pin connectors are not 5V tolerant. According to the Virtex 4 datasheets, the maximum applied voltage to these signals is VCCO + 0.5V (3.0V while powered on). These connections are not buffered, and the Virtex 4 part is sensitive to ESD. Take care when handling the board to avoid touching the daughtercard connectors.

3 Power-On Instructions

The image below represents your DN8000K10PCIE. You will need to know the location of the following parts referenced in this chapter.

Figure 3 DN8000K10PCIE configuration controls

To begin working with the DN8000K10PCIE, follow the steps below:
3.1 Memory and heatsinks
There should be an active heatsink installed on each FPGA on the DN8000K10PCIE and a fan over the power supply units. Virtex 4 FPGAs are capable of dissipating 15W or more, so you should always operate them with heatsinks installed.

The DN8000K10PCIE comes packaged without memory installed. If you want the Dini Group reference design to test the DDR2 interface, you can install them now in the 1.8V DDR2 DIMM sockets.

The reference design does not operate with the DNSODM products (RLDRAM, SRAM, QDR RAM) in these slots.

Figure 4 FPGA Names

The socket DIMMB is connected to FPGA B. The socket can accept any capacity DDR2 Sodimm module. Note that DDR1 modules will not work in these slots since they are supplied with 1.8V power and DDR1 requires 2.5V power (and a completely different pin-out).

3.2 Prepare configuration files
The DN8000K10PCIE reads FPGA configuration data from a SmartMedia card. To program the FPGAs on the DN8000K10PCIE, FPGA design files (with a .bit file extension) put on the root directory of the SmartMedia card file using the provided usb card reader.

The DN8000K10PCIE-1 (1 lane PCI express) ships with a 32 MB SmartMedia card preloaded with the Dini Group reference design. The DN8000K10PCIE-8 (8 lane PCI express) ships with a 128MB CompactFlash card preloaded with the Dini Group reference design.
1. Insert the provided flash card labeled “Reference Design” into your usb card reader (provided). Make sure the card contains the files:

 FPGA_A.bit
 FPGA_B.bit
 FPGA_C.bit
 main.txt

 The files FPGA_A-C.bit are files created by the Xilinx program bitgen, part of the ISE 8.1 tools. The file main.txt contains instructions for the DN8000K10PCIE configuration circuitry, including which FPGAs to configure, and to which frequency the global clock networks should be automatically adjusted.

2. Eject the card from the computer (using the Eject command on windows), insert the flash card labeled “Reference Design” into the DN8000K10PCIE’s SmartMedia slot, contacts down or CompactFlash slot, label up.

3.3 Connect cables
The configuration circuitry can accept user input to control FPGA configuration or provide feedback during the configuration process. The configuration circuitry IO can also be used to transfer data to and from the user design.

1. Use the provided ribbon cable to connect the MCU RS232 port (P2) to a computer serial port to view feedback from the configuration circuitry during FPGA configuration. Run a serial terminal program on your PC (On Windows you can use HyperTerminal Start->Programs->Accessories->Communications->HyperTerminal) and make sure the computer serial port is configured with the following options:

 - Bits per second: 19200
 - Data bits: 8
 - Parity: None
 - Stop Bits: 1
 - Flow control: None
 - Terminal Emulation: VT100

2. Use the provided USB cable to connect the DN8000K10PCIE to a Windows computer (Windows XP is recommended).

3. Plug an ATX power supply into J1, or plug the DN8000K10PCI into a PCI slot. Do not plug an external power supply into J1 if the DN8000K10PCI is in a PCI slot. Turn on the ATX power supply. The 4-pin aux power supply connector, P3 can be used if connected to the same power supply as the host computer. This is not required for operation, so you should leave it disconnected.
4. When the DN8000K10PCIE powers on, it automatically loads Xilinx FPGA design files (ending with a .bit extension), found on the SmartMedia or CompactFlash card in the SmartMedia slot into the FPGAs. View configuration feedback over RS232

As the DN8000K10PCIE powers on, your RS232 terminal (connected to P2) will display useful information about the Configuration process.

3.3.1 Watch the configuration status output
No USB cable detected, rebooting from FLASH...please wait

Setting ACLK...
N: 01 M: 000001000
DONE
Setting BCLK...
N: 01 M: 000001000
DONE
Setting DCLK...
N: 01 M: 000001000
DONE
Setting R1CLK...
N: 01 M: 000001000
DONE
Setting R2CLK...
N: 01 M: 000001000
DONE

-= DN8000K10PCIe MCU FLASH BOOT -==
-- FPGAS STUFFED --
A B

-- SMART MEDIA INFO --
MAKER ID: EC
DEVICE ID: 75
SIZE: 32 MB

-- FILES FOUND ON SMART MEDIA CARD
FPGA_A.BIT
FPGA_B.BIT
MAIN~1.TXT
MAIN.TXT
-- CONFIGURATION FILES --
FPGA A: FPGA_A.BIT
FPGA B: FPGA_B.BIT

--OPTIONS--
Message level set to default: 2
Sanity check is set to default: ON
N: 00 M: 000001010
DONE
Setting BCLK...
N: 01 M: 000001100
DONE
Setting DCLK...
N: 01 M: 000001000
DONE
Setting R1CLK...
N: 01 M: 000001000
DONE
Setting R2CLK...
N: 01 M: 000001000
DONE

**CONFIGURING FPGA:
**
-- Performing Sanity Check on Bit File --
-- BIT FILE ATTRIBUTES --
FILE NAME: FPGA_A.BIT
FILE SIZE: 003A943B bytes
PART: 4vlx100ff151317:09:38
DATA: 2005/07/25
TIME: 17:09:38

The global clocks (ACLK, BCLK, DCLK) are frequency-configurable. The M binary sequence represents the multiplication applied to the installed crystal. The N represents the division applied. U6, U14, U20, U31 and the ICS8442AY datasheet.

The MCU is setting the clocks to their default values ACLK 200Mhz, BCLK 108.8Mhz, DCLK 128Mhz, R1CLK (not available on DN8000K10PCIE), R2CLK (**DEFAULT**)

The MCU detects which FPGAs are present

The MCU detects a SmartMedia card is present

The MCU tries to access the SmartMedia card. If the MCU is not successful in reading the files on the SmartMedia card, be sure you have not formatted the card in Windows. Windows uses a non-standard format for media cards and will make the card unreadable. You can download a format utility from dinigroup.com to repair your incorrectly-formatted SM card.

The MCU reads the contents of the file MAIN.TXT and executes each instruction line.

Here the MCU is setting the clocks according to instructions in MAIN.TXT

The MCU is configuring FPGA A according to instructions in MAIN.TXT

The sanity check option reads the design (*.bit) file headers and verifies that the design is compiled for the same type of FPGA that the MCU detects on your DN8000K10PCIE. If the design and FPGA do not match, the MCU will reject the file and flash the Error LED. You may need to disable this option (See Chapter X, section X) if you want to encrypt or compress your configuration.
Sanity check passed

-- Performing Sanity Check on Bit File --
-- BIT FILE ATTRIBUTES --
FILE NAME: FPGA_B.BIT
FILE SIZE: 003A943B bytes
PART: 4vlx100ff151317:05:01
DATA: 2005/07/19
TIME: 17:05:01
Sanity check passed

----------DONE WITH CONFIGURATION OF FPGA: A

----------CONFIGURING FPGA B----------

-- TEMPERATURE SENSORS --
A YES
B YES
FPGA Temperature Alarm Threshold: 80 degrees C

DN8000K10PCie MAIN MENU (Jul 27 2005 10:38:05)
1.) Configure FPGAs using "MAIN.TXT"
2.) Interactive configuration menu
3.) Check configuration status
4.) Change MAIN configuration file
5.) List files on Smart Media
6.) Display Smart Media text file
7.) Change RS232 PPC Port
8.) Set FPGA Address
9.) Write to FPGA at current address

a.) Read from FPGA at current address
g.) Display FPGA Temperatures
h.) Set FPGA Temperature Alarm Threshold
ENTER SELECTION:

The MCU is configuring FPGA B according to instructions in MAIN.TXT

The MCU is setting the temperature threshold to cause a board reset.

Figure 5 RS232 Output

You should see the DN8000K10PCIE MCU main menu. If the reference design is loaded in the Virtex 4 FPGAs, then you should see the above on your terminal. Try pressing 3 to see if the configuration circuit was successful in programming the FPGAs.

ENTER SELECTION: 3

******************** CONFIGURATION STATUS ********************
FPGA B NOT configured

The easiest way to verify your FPGAs are configured is to look at DS18, DS14, DS16 located above each FPGA. When the green LEDs are lit, the FPGA under it is successfully configured.
3.3.2 Interactive configuration
If you want to put multiple designs on a single Smart Media card, you can use the interactive configuration menu to select which .bit file to use on each FPGAs. Select menu option 2.

```
ENTER SELECTION: 2
-=-- INTERACTIVE CONFIGURATION MENU -=--

1) Select bit files to configure FPGA(s)
2) Set verbose level (current level = /)
3) Enable sanity check for bit files
M) Main Menu

Enter Selection:
```

Figure 6 Interactive Config Menu

3.3.3 Read temperature sensors
The DN8000K10PCIE is equipped with temperature sensors to measure and monitor the temperature on the die of the Virtex 4 FPGAs. According to the Virtex 4 datasheet, the maximum recommended operating temperature of the die is 85C degrees. If the microcontroller measures a temperature above 80 degrees, it will reset the DN8000K10PCIE.

If you think your DN8000K10PCIE is resetting due to temperature overload, you can use the temperature monitor menu to measure the current junction temperature of each FPGA.

```
ENTER SELECTION: g

-- FPGA TEMPERATURES (Degrees Celsius [+- 4]) --
B 29
-- Set FPGA Temperature Alarm Threshold --
(degrees C, decimal values, range [1-127])
Old Threshold: 80
New Threshold: 85
Threshold Updated: 85 Degrees C
```

Figure 7 Temperature Threshold Menu

The Virtex 4 FPGA can operate as hot as 120C degrees before damaging the part, although timing specifications are not guaranteed. The MCU allows you to change the reset threshold, although we recommend improving your heat dissipation to maintain a low junction temperature.
3.3.4 Multiplex Serial port
The DN8000K10PCIE has one serial port (P1) for user use. This single port is multiplexed so that any FPGA can access it through its RX and TX signals. You can use the RS232 MCU interface to change the FPGA to which P1 is connected.

```
ENTER SELECTION: 7

PORT 1: D
PORT 2: A
PORT 3: A
PORT 4: A

Enter Port to change (1-4, q to quit): 1
Enter FPGA to set port to (A-I): B
Do you want to change more RS232 Ports (y or n)?: n
```

Figure 8 RS232 Port Menu

The DN8000K10PCIE only has one serial port (Port 1). Changing ports 2-4 will have no effect.

3.4 Check LED status lights
The DN8000K10PCIE has many status LEDs to help the user confirm the status of the configuration process.
1. Check the power voltage indication LEDs to confirm that all voltage rails of the DN8000K10PCIE are present. From the top, the LEDs indicate the presence of 5V, 3.3V, 2.5V, and “ATX POWER OK” Green lit LED's on the voltage present LEDs indicate the rails are greater than 1.7V. A green lit “ATX power OK” indicates that the voltage monitors inside the ATX power supply are within acceptable operating ranges (5V is 4.5 – 5.5V, 3.3V is 3.0-3.6V). If this LED is not lit green, the DN8000K10PCIE might not function properly.

2. Check the Configuration status LEDs. These LEDs are visible from outside the case when the DN8000K10PCIE is installed in an ATX case. Under error conditions, all four red LEDs will blink.

3. Check the Spartan FPGA status LED, DS24. This LED indicates that the Spartan II FPGA has been configured. If this LED is not lit soon after power on, then there may be a problem with the firmware on the DN8000K10PCIE. This LED off or blinking may indicate a problem with one of the board’s power supplies.
4. Check the FPGA A status LED, DS18 to the upper left of FPGA A. This green LED is lit when FPGA A is configured and operational. This light should be on if you loaded the reference design from the SmartMedia card.

5. Check the FPGA B status LED, DS14 directly above FPGA B. This light should be lit green if your DN8000K10PCIE was installed with the FPGA B option, and the reference design is loaded.

6. Check the FPGA C status LED, DS16 to the upper left of FPGA C. This green LED will light if you have the FPGA C option and the FPGA is configured.

7. Check the FPGA A User LEDs on the bottom side of the DN8000K10PCIE. If you have successfully loaded the Dini Group’s DN8000K10PCIE reference design, these should flash all 8 green LEDs.

8. Check the FPGA C User LEDs on the bottom side of the DN8000K10PCIE. If you have ordered the “FX” FPGA C option, and the reference design is loaded, these will flash all 16 LEDs.

9. If you suspect one or more FPGAs did not configure properly, check the configuration circuitry’s status lights. These are four right-angle mounted LEDs viewable out the side of the PC case. If there has been an error, the four LEDs will blink. If there has been no error, the two lower LEDs will be ON and the upper two OFF. If there was an error, the easiest way to determine the cause of the error is to connect a terminal to the RS232 port (P2) and try to configure again. Configuration feedback will be presented over this port.

You should also notice the Fans mounted above the 3 Virtex 4 FPGAs and the Fan mounted above the power supplies spinning.

<table>
<thead>
<tr>
<th>Assembly Number</th>
<th>Signal</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS9</td>
<td>5.0V_PRESENT</td>
<td>The 5.0V power rail is present (above ~1.7V)</td>
</tr>
<tr>
<td>DS10</td>
<td>3.3V_PRESENT</td>
<td>The 3.3V power rail is present (above ~1.7V)</td>
</tr>
<tr>
<td>DS11</td>
<td>2.5V_PRESENT</td>
<td>The 2.5V power rail is present (above ~1.7V)</td>
</tr>
<tr>
<td>DS12</td>
<td>1.8V_PRESENT</td>
<td>The 1.8V power rail is present (above ~1.7V)</td>
</tr>
<tr>
<td>DS13</td>
<td>ATX_POK</td>
<td>The ATX power supply is generating 5.0V and 3.3V</td>
</tr>
<tr>
<td>LED</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>DS15</td>
<td>SPARTAN_LED3 within 5% at the source</td>
<td></td>
</tr>
<tr>
<td>DS17</td>
<td>SPARTAN_LED2 This LED will flicker when there is Main Bus activity (See section X.X.X)</td>
<td></td>
</tr>
<tr>
<td>DS19</td>
<td>SPARTAN_LED1 This LED will flicker when there is USB activity (Bulk Transfer)</td>
<td></td>
</tr>
<tr>
<td>DS20</td>
<td>SPARTAN_LED0 This LED will flicker when there is SmartMedia card activity.</td>
<td></td>
</tr>
<tr>
<td>DS21.1 (top)</td>
<td>MCU_LED0 MCU_LED[1:0] Codes:</td>
<td></td>
</tr>
<tr>
<td>DS21.2</td>
<td>MCU_LED1 01 FPGA A is configuring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 FPGA B is configuring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 FPGA C is configuring</td>
<td></td>
</tr>
<tr>
<td>DS21.3</td>
<td>MCU_LED2 The last FPGA configuration was successful</td>
<td></td>
</tr>
<tr>
<td>DS21.4 (bottom)</td>
<td>MCU_LED3 Blinking: There was a configuration error. Use the RS232 port to read the error. Off: Configuring. On: The last configuration command was successful</td>
<td></td>
</tr>
<tr>
<td>DS24</td>
<td>SPARTAN_DONE The Spartan 2 configuration FPGA is configured. This light will turn off if the board is in power reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>DS18</td>
<td>FPGA_A_DONE</td>
<td>The Virtex 4 FPGA A is configured</td>
</tr>
<tr>
<td>DS14</td>
<td>FPGA_B_DONE</td>
<td>The Virtex 4 FPGA B is configured</td>
</tr>
<tr>
<td>DS16</td>
<td>FPGA_C_DONE</td>
<td>The Virtex 4 FPGA C is configured</td>
</tr>
<tr>
<td>DS8</td>
<td>SFP2_LOS</td>
<td>SFP module 2 Loss-of-signal</td>
</tr>
<tr>
<td>DS4</td>
<td>SFP2_FAULT</td>
<td>SFP module 2 transmitter fault</td>
</tr>
<tr>
<td>DS5</td>
<td>XFP2_INT</td>
<td>XFP module 2 error</td>
</tr>
<tr>
<td>DS1</td>
<td>XFP2_FAULT</td>
<td>XFP module 2 transmitter fault</td>
</tr>
<tr>
<td>DS6</td>
<td>SFP1_LOS</td>
<td>SFP module 1 Loss-of-signal</td>
</tr>
<tr>
<td>DS2</td>
<td>SFP1_FAULT</td>
<td>SFP module 1 transmitter fault</td>
</tr>
<tr>
<td>DS7</td>
<td>XFP1_INT</td>
<td>XFP module 1 error</td>
</tr>
<tr>
<td>DS3</td>
<td>XFP1_LOS</td>
<td>XFP module 1 Loss-of-signal</td>
</tr>
<tr>
<td>DS48, DS47, DS46, DS45, DS44, DS43, DS42, DS41,</td>
<td>User LEDs from FPGA C</td>
<td></td>
</tr>
<tr>
<td>DS40, DS39, DS38, DS37, DS36, DS35, DS34, DS33,</td>
<td>User LEDs from FPGA A</td>
<td></td>
</tr>
<tr>
<td>DS32, DS31, DS30, DS29, DS28, DS27, DS26, DS25</td>
<td>User LEDs from FPGA A</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10 DN8000K10PCIE LEDs
4 Using the Reference Design with the Provided Software

To communicate with the reference design on the DN8000k10PCIE, you should use the USB interface.

The USB interface allows configuration of the FPGAs and bulk data transfer to and from the User design. The RS232 interface allows low-speed data transfers to and from the User design, and control and monitoring of the configuration process.

This section will get you started and show you how to operate the provided software. For detailed information about the reference design and implementation details, see The Reference Design chapter.

4.1 Operating the USB controller program

Use the provided USB monitoring software to verify that the design is loaded into the FPGAs.

1. Insert the CDROM that came with your DN8000K10PCIE into the CDROM drive of your computer.

2. Connect the USB cable to your DN8000K10PCIE and a Windows XP PC. When the DN8000K10PCIE powers on, Windows will launch the new hardware wizard. (Windows XP)

 ![Found New Hardware Wizard](image)

 Welcome to the Found New Hardware Wizard

 This wizard helps you install software for:

 DiniGroup DN8000K10 FLASH Boot

 ![If your hardware came with an installation CD or floppy disk, insert it now.]

 What do you want the wizard to do?

 - Install the software automatically (Recommended)
 - Install from a list or specific location (Advanced)

 Click Next to continue.
Select Install from a list or specific location (Advanced)
Select Don't search. I will choose the driver to install.
Select Have Disk…
Browse to the user CD->Controller Programs->drivers->win_wdm->dndevusb.inf
Select Next>
Select Finish.

3. After Windows installs the driver, you will be able to see the following device in the USB section of Windows device manager: “DiniGroup DN8000K10PCIE FLASH boot”.

4. Run the USB controller application found on the product CD in “Controller Software\USBController\USBController.exe”.

5. This window will appear showing the current state of the DN8000K10PCIE. Next to each FPGA a green light will appear if that FPGA is configured successfully. If you have the reference design loaded and a DDR2 SODIMM installed, you can use the USB Controller to run tests of the SODIMM. From the FPGA Memory menu, select Test DDR.
6. Clear the FPGAs of their configurations. Right-click on an FPGA and select from the popup menu, “Clear FPGA”. The green light above the FPGA on the GUI and on the board should stop shining green.

7. Configure an FPGA using the USB Controller program. Right-click on an FPGA and select Configure FPGA via USB from the popup menu. The program will open a dialog box for you to select the configuration file to use for configuration. Browse to the provided user's CD \"USERCD:\BitFiles\8000K10PCIE\MainTest\LX100\fpga_a.bit\" If you are configuring an LX200 or FX60 devices you should select a bit file from the LX200 or FX60 directories instead. If you are configuring FPGA B or FPGA C, you should select fpga_b.bit or fpga_c.bit instead.

![Done](image)

FPGA B cleared successfully.
FPGA A cleared successfully.
Doing a sanity check...Sanity Check passed. Configuring FPGA B via USB...please wait.
File D:\dn_BitFiles\DN8000K10PCIE\MainTest\LX100\fpga_b.bit transferred.
Configured FPGA B via USB

8. The message box below the DN8000K10PCIE graphic should display some information about the configuration process

The USB Controller program also allows you to easily configure and transfer data to and from the user design on the emulation board. More information is provided in the chapter Controller Software

4.2 Communicating to the User Design over the Serial Port

You may want to communicate with your design over the user serial port (P1). Only one FPGA can use P1 at a time. Before you can communicate to your design, change the RS232 multiplexing settings as described in Section 3.6.4. You can also change the RS232 multiplexing settings using the USB Controller software.

Connect a second RS232 cable to P1, the FPGA RS232. It is located right next to the configuration RS232 port, P2. If you have the reference design loaded, the FPGA RS232 port runs at 19200 bps, 8 bit, no parity. By default, the FPGA RS232 port is connected to FPGA A. One the computer's terminal, the reference design is programmed to digitally loopback the input to the output. If on the terminal you can read your own output, then the reference design was able to capture the RS232 signal and generate an RS232 signal that your computer could capture.
If you are familiar with previous Dini Group products, the reference design test outputs could be read from this serial port. On the DN8000K10PCIE, you must use the AETEST application to read the results of self-test.

4.3 Using AETEST to run hardware tests

AETest is the program that you can use to verify the hardware on the DN8000K10PCIE, as well as to demonstrate the reference design function. The following instructions assume you have a PC running the Windows XP operating system. The user CD includes a Windows version of the AETest program. If you plan to use the DN8000K10PCIE in stand-alone mode, connect the DN8000K10PCIE to your Windows XP computer and use aetest_usb in D:\aetest_usb\aeusb_wdm.exe. If the computer asks for a driver, click “Have Disk” and browse to D:\AETest_sb\driver\win_wdm\dndevusb.inf

4.3.1 AETest on Linux or Solaris

To use the AETest application on Linux or Solaris, you must compile the source code included on the User CD. Instructions for compiling AETest are found in chapter 3.

4.3.2 Use AETest

The Aetest application should display it’s main menu.

[Figure 13 AETEST Main Menu]

Run one of the tests. Choose option 1. Remember, the FPGA you test has to be loaded with the reference design, or the test will fail.
For more information on the AETEST program, see Chapter 3.

4.4 Moving On

Congratulations! You have just programmed the DN8000K10PCIE and learned all of the features that you must know to start your emulation project. If you are new to Xilinx FPGA, you might want move to chapter 4, introduction to ISE and Virtex 4 and start adding your Verilog code to the reference design. The user CD contains a netlist of the board to be used as a connection summary. All of the source code for the reference design in Verilog, including embedded PowerPC code and utility is included on the provided CD.
Controller Software

1 USB Controller

USBController application is used to communicate with the DN8000K10PCIE.

All USBController source code is included on the CD-ROM shipped with the DN8000K10PCIE. The USBController can be installed on Windows 98/ME/2000/XP. There is a command line version called AETEST_USB that can be installed on Linux and Solaris.

The USBController Application contains the following functionality:
- Verify Configuration Status
- Configure FPGA(s) over USB
- Configure FPGAs via Smartmedia card
- Clear FPGA(s)
- Reset FPGA(s)
- Set Global clocks frequency
- Set RocketIO CLK Frequency
- Update MCU FLASH firmware

The following function interface with the Dini Group reference design.
- Read/Write to FPGA(s) – see the reference design chapter for address maps
- Test DDRs/FLASH/Registers/FPGA Interconnect

1.1 Menu Options

1.1.1 File Menu

The File Menu has the following 2 options:

a. Open – opens a file with the selected text editor (notepad by default). To change the text editor see Settings/Info Menu section

b. Exit – Closes the USBController application
1.1.2 Edit Menu
The Edit Menu performs the basic edit commands on the command log in the bottom half of the USBController window.

1.1.3 FPGA Configuration Menu
The FPGA Configuration Menu has the following options:

1) Configure via USB (individually) – After selecting this option a window will pop and ask which FPGA you want to configure and then what bitfile you want to configure the selected FPGA with. The status of the FPGA configuration will detailed in the log window and the DN8000K10PCIE will be updated after the bitfile has been transferred.

2) Configure via USB using file – This option allows the user to configure more than one FPGA over USB at a time. To use this option you must create a setup file that contains information on which FPGA(s) should be configured and what bitfiles should be used for each FPGA. The file should be in the following format, the first character of each line represents which FPGA you want configured (a-f or A-F), this letter should be followed by a colon and then the path to the bitfile to use for this FPGA. The path to the bitfile is relative to the directory where this setup file is, or you can use the full path. Below is an example of an accepted setup file:

A: fpga_a.bit
B: fpga_b.bit
C: fpga_c.bit

3) Configure via SmartMedia Card – This option allows the user to use a SmartMedia card to configure the FPGAs. Please section Creating Configuration File “main.txt” for information on what files should be on the SmartMedia card to use this option.

4) Clear All FPGAs – This option will deconfigure all FPGAs.

5) Reset – This option sends an active low reset (active for approx. 20ns) to all FPGAs on the signal called RESET_FPGASn which is connected to the following I/O pins:

FPGA A: AK19
FPGA B: K21
FPGA C: AG18
1.1.4 Settings/Info Menu

The Settings/Info Menu has the following options:

(1) Set FPGA RocketIO CLK Frequency – When the DN8000K10PCIE is first powered up, the RocketIO CLK inputs to the FPGAs are inactive. The RocketIO CLK inputs are connected to the following FPGA Differential CLK inputs on all FPGAs: F21/G21 and AT21/AU21. This menu option allows the user to specify what frequency the RocketIO CLKs should be set at for each FPGA. The supported frequency range is 31.25MHz – 700MHz. After selecting this option, a pop-up window will ask which FPGA’s RocketIO Frequency you want to set (or you can choose to set all to the same frequency), and then what frequency you want. Check the log window to verify what frequency the CLKs were actually set at.

(2) Set Global clock frequencies

The clocks on the DN8000K10PCIE are automatically adjusted to the user’s desired frequency by reading the setup file on the SmartMedia card. If you wish to change the frequency after power-on, or do not want to use a SmartMedia card, you can set the frequency in the USB program.

ACLK) ACLK is generated from a 25MHz crystal. Available frequencies are:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.25</td>
<td>34.375</td>
<td>37.5</td>
<td>40.625</td>
<td>43.75</td>
</tr>
<tr>
<td>59.375</td>
<td>62.5</td>
<td>65.625</td>
<td>68.75</td>
<td>71.875</td>
</tr>
<tr>
<td>93.75</td>
<td>100</td>
<td>106.25</td>
<td>112.5</td>
<td>118.75</td>
</tr>
<tr>
<td>156.25</td>
<td>162.5</td>
<td>168.75</td>
<td>175</td>
<td>187.5</td>
</tr>
<tr>
<td>262.5</td>
<td>275</td>
<td>287.5</td>
<td>300</td>
<td>312.5</td>
</tr>
<tr>
<td>425</td>
<td>450</td>
<td>475</td>
<td>500</td>
<td>525</td>
</tr>
<tr>
<td>675</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BCLK) BCLK is generated from a 14.318 Mhz crystal. Supported frequencies are:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.22</td>
<td>34.01</td>
<td>35.80</td>
<td>37.58</td>
<td>39.37</td>
<td>41.16</td>
<td>42.95</td>
</tr>
<tr>
<td>50.11</td>
<td>51.90</td>
<td>53.69</td>
<td>55.48</td>
<td>57.27</td>
<td>59.06</td>
<td>60.85</td>
</tr>
<tr>
<td>68.01</td>
<td>69.80</td>
<td>71.59</td>
<td>73.38</td>
<td>75.17</td>
<td>76.96</td>
<td>78.75</td>
</tr>
<tr>
<td>85.91</td>
<td>89.49</td>
<td>93.07</td>
<td>96.65</td>
<td>100.2</td>
<td>103.8</td>
<td>107.4</td>
</tr>
<tr>
<td>121.7</td>
<td>125.3</td>
<td>128.9</td>
<td>132.4</td>
<td>136.0</td>
<td>139.6</td>
<td>143.2</td>
</tr>
<tr>
<td>157.5</td>
<td>161.1</td>
<td>164.7</td>
<td>168.2</td>
<td>171.8</td>
<td>179.0</td>
<td>186.1</td>
</tr>
<tr>
<td>214.8</td>
<td>221.9</td>
<td>229.1</td>
<td>236.2</td>
<td>243.4</td>
<td>250.6</td>
<td>257.7</td>
</tr>
<tr>
<td>286.4</td>
<td>293.5</td>
<td>300.7</td>
<td>307.8</td>
<td>315.0</td>
<td>322.2</td>
<td>329.3</td>
</tr>
<tr>
<td>372.3</td>
<td>386.6</td>
<td>400.9</td>
<td>415.2</td>
<td>429.5</td>
<td>443.9</td>
<td>458.2</td>
</tr>
<tr>
<td>515.4</td>
<td>529.8</td>
<td>544.1</td>
<td>558.4</td>
<td>572.7</td>
<td>587.0</td>
<td>601.4</td>
</tr>
<tr>
<td>658.6</td>
<td>672.9</td>
<td>687.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DCLK) DCLK is generated from a 16.0 Fundamental crystal. Supported frequencies:

32 34 36 38 40 42 44 46 48 50
52 54 56 58 60 62 64 66 68 70
72 74 76 78 80 82 84 86 88 92
96 100 104 108 112 116 120 124 128 132
136 140 144 148 152 156 160 164 168 172
176 184 192 200 208 216 224 232 240 248
256 264 272 280 288 296 304 312 320 328
336 336 344 352 368 384 400 416 432 448
464 480 496 512 528 544 560 576 592 608
624 640 656 672 688

(3) Change Text Editor – This option allows the user to select a text editor to use (the default editor is notepad).

(4) FPGA Stuffing Information – This option will display the type of FPGAs that are stuffed on the DN8000K10PCIE.

(5) MCU Firmware Version – This option will display the MCU Firmware version in the log window.

(6) BOARD/SPARTAN Version – This option will display the Board Version along with the Spartan (Config Fpga) Version.

2 Updating the Firmware

Dini Group may release firmware bug fixes or added features to the DN8000K10PCIE. If a firmware update is released you will need to

There are two firmware files that Dini Group may release, the first is a Micro controller (MCU) software update that is stored in a flash memory. This update can be accomplished easily from within the USBCcontroller application.

The second update that may be required is a Spartan FGPA core update. The configuration data for the Spartan FPGA is contained in a Xilinx configuration PROM. This update can be accomplished with the Xilinx JTAG programming program, iMPact.

2.1 Updating the MCU (flash) firmware

To protect against accidental erasure, the MCU firmware cannot be updated unless the board is put in firmware update mode during power-on.
To put the board in firmware update mode, find the “User Reset” button. Hold down this button while the board powers on, or hold down this button and also press and release the “Hard Reset” button.

Open the USB Controller program. If the DN8000K10PCIE powered on in firmware update mode, there will be an “Update Flash” button near the top of the USB Controller window. Click on this button.
When the Open… dialog box appears, navigate to the Firmware image file supplied by Dini Group. The file name should be “flash_flp.hex”. Press OK.

The USB Controller should freeze for about 10 seconds while the firmware update is taking place. When the download is complete, the Log window should print, “Update Complete”

Power cycle the board to return it to normal operation mode.

2.2 Updating the Spartan (EEPROM) firmware

Connect a Xilinx Parallel IV or Platform USB configuration cable to the parallel port of your computer. The Parallel IV cable requires external power to operate, so you may need to connect the keyboard connector power adapter. When the Parallel IV cable has power, the status LED on Parallel IV turns amber.

Use a 2mm IDC cable to connect the programmig cable to the DN8000K10PCIE connector “SPARTAN JTAG”
Power on the DN8000K10PCIE. When the Parallel IV cable is connected to a header, the status light turns green.

Open the Xilinx program Impact, usually found at Start->programs->Xilinx ISE 7.1->Accessories->impact

Impact may ask you to open an impact project. Hit cancel.

Choose the menu option File->Initialize Chain

Impact should detect 2 devices in the JTAG chain. Xc18v02 and Xc2s200. For each item in the chain Impact will direct you to select a programming file for each. For the xc18v02 device, select the Spartan Firmware update file provided by Dini Group. This file should be named prom.mcs. Hit Open. Impact will then ask for a programming file to program the xc2s200. Press Bypass.
To program the prom. Right-click on the prom and select Program… from the popup menu. In the options dialog that follows, the options “Erase before programming” should be selected, and “Verify” should be deselected. Press OK. The programming process takes about 35 seconds over the parallel port.

Power cycle the DN8000K10PCIE. The new firmware is now loaded. You can close impact and disconnect the Parallel IV cable.
Hardware

1 Overview

The DN8000K10PCIE was designed to maximize the number of useful gates in your emulation project running at speed by providing the densest interconnect possible. To achieve this goal, the DN8000K10PCIE is equipped with the highest-capacity FPGAs available today, the Xilinx Virtex 4 LX200. The FPGAs on the DN8000K10PCIE are in the largest, 1513-ball package to give the user extremely high IO count, for high bandwidth and low-latency interconnect between FPGAs. Three hundred eighty nine differential links between FPGAs A and B allow for as much as 189 Gb/s communication between the two FPGAs.

In order to support enough bandwidth to deliver real time data to your design at speed, the DN8000K10PCIE is equipped with an optional Xilinx Virtex 4 FX100 with RocketIO Multi-Gigabit Tranceivers. Serial connections over Fibre, Coax ribbon cable, and Coax SMA cables allow for a total aggregate 150 Gb/s off-board communication.

To allow you to connect the FPGA to the resources that will be on your end product, the DN8000K10PCIE also has highspeed expansion capabilities.

Below is a block diagram of the DN8000K10PCIE.
The number of connections between FPGA A and FPGA C in the 8-Lane Version of the DN8000K10PCIE (compared to the 1-lane version) is reduced from 52 pairs to 26 pairs.

The following sections describe in detail each circuit on the DN8000K10PCIE. Note that Schematics appearing in this section are illustrative and may have had details omitted or have been modified for clarity and brevity. If you need to probe, modify or design around the DN8000K10PCIE you will need to examine the complete schematics. The DN8000K10PCIE schematics are provided on the user CD, along with a netlist of the DN8000K10PCIE.

2 Configuration Circuit

2.1 Overview

The goal of the configuration circuit on the DN8000K10PCIE is to allow the user to configure his FPGAs using any host interface. The configuration system on the DN8000K10PCIE allows configuration over PCI, USB, JTAG, or automatic configuration from a SmartMedia or CompactFlash card.

The circuit is designed to provide an easy configuration solution that will work out-of-the-box for most users. For special configuration requirements, the configuration circuitry is programmable. The verilog code for the configuration FPGA and the C code for the
microcontroller are both provided on the reference CD. The C code for the USB Windows GUI controller program are also included on the User CD.

2.2 The Spartan 2 FPGA

The configuration circuitry of the DN8000K10PCIE is built around a Xilinx Spartan II Fpga. The SelectMap interface of the user FPGAs is connected directly to the general purpose IOs of the Spartan 2, allowing the maximum flexibility of configuration. The Spartan 2 also shares connectivity with the three user FPGAs over a 40-bit Main bus, allowing fast transfers from a computer to the user design over USB. The Spartan 2 FPGA also provides IO expansion for the Cypress Microcontroller. The Spartan II FPGA comes preloaded with a core that provides a way to program the Virtex 4 FPGAs over USB and a flash card (SmartMedia or CompactFlash).

The Spartan FPGA is connected to the Cypress microcontroller’s address and data buses, and the control registers within the Spartan II FPGA that control FPGA configuration are memory-mapped into the MCU’s address space.

![Figure 20 Spartan II IO Connections](image-url)
2.2.1 Spartan Configuration

The Spartan 2 FPGA is configured from a Xilinx serial prom. The Spartan’s configuration mode is hard-wired into Master Serial mode. After power up, the Spartan automatically clocks an external PROM, U41, which programs the FPGA over the serial configuration data pin DIN.

A green LED, DS24, lights when the DONE pin is high. This signal is driven by the Spartan 2 FPGA when it is configured and running.

Both the Spartan and the serial prom are connected in a JTAG chain attached to J14. This header is used when performing firmware updates to update the PROM.

As soon as the Spartan II FPGA is configured, it resets the Cypress microcontroller. Pull-downs on the PROG pin of FPGAs A B and C ensure that the FPGAs cannot be active unless the Spartan II is successfully configured.

2.2.2 Smart Media/Compact Flash

The Smart Media card interface is connected to the IOs of the Spartan 2 FPGA.
The Smart Media data bus, D[0-7], also connects to the microcontroller. Currently the MCU connection is not used. The Microcontroller is able to read from the Smart Media interface by accessing the Spartan’s memory-mapped data over the MCU memory interface for the purposes of reading instructions from SmartMedia cards.

For instructions on creating a Smart Media card for configuring the DN8000K10PCIE, see the section Configuration Options: Smart Media.

2.2.3 MCU communication

The MCU communicates to the Spartan 2 FPGA over it’s external memory interface, pins D0:7 and A0:15. The Spartan 2 is assigned the address range 0xDF00 to 0xDFFF in the Microcontrollers memory space.

The 480Mbs data rate of USB 2.0 is too fast for the microcontroller to control, so the MCU’s hardware passes USB bulk transfer data to the MCU GPIF interface. These signals, SM[0-7] and GPIF_CTL, GPIF_RDY, connect to the Spartan FPGA. The SM[0-7] signals also connect to the SmartMedia card socket, although the MCU does not communicate with the SmartMedia interface directly. The MCU_IFCLK signal provides a clock for this interface. The clock is driven from the Spartan 2 FPGA.

2.2.4 RS232

The DN8000K10PCIE has two RS232 headers. One (P2) is used by the microcontoller unit to provide configuration feedback and control. The other (P1) is connected to the Spartan 2 FPGA. The Spartan 2 FPGA has one RX and one TX signal connected to each Virtex 4 FPGA. The Spartan FPGA will multiplex the RX and TX signals to the Virtex FPGAs to the RS232 header P1. The Spartan 2 internally multiplexes the signals on the user RS232 header P1, to one of these three sets of signals. To change the Virtex 4 FPGA that has access to the RS232 headers, you can use the provided USB application program, or you can change the setting on a terminal connected to the Microcontroller unit’s RS232 port (P2).
Since RS232 uses a 12V signal levels, the RS232 signals from the SpartanII are first buffered through a voltage translation buffer shown below.

![RS232 buffer diagram]

Figure 23 RS232 buffer

On the back side of the DN8000K10PCIE, there are two duplicate RS232 ports (P7 and P8) that can be used if an installed daughter card is covering the headers on the front. These duplicate headers are not installed by default, but can be installed on request. They are compatible with a surface mount, 5x2 0.1” header.

2.2.5 IIC
There is a single IIC bus on the DN8000K10PCIE connecting all IIC enabled chips on the board. On this bus are three MAX1617A temperature sensing chips (U3, U4, U24), two DDR2 SODIMM sockets, and a serial eprom. The temperature sensors on the IIC bus are polled about once per second by the MCU to read the temperature of each FPGA.

2.3 Configuration Options
The DN8000K10PCIE allows FPGA configuration from any of four methods.

When a Virtex 4 FPGA is configured, the DONE pin on the FPGA is pulled high. The DN8000K10PCIE has a green LED attached to the DONE signal of each to indicate the state of the DONE pin on the three Virtex 4 FPGAs and on the SpartanII configuration FPGA.

![DONE LEDs diagram]

Figure 24 DONE LEDs
2.3.1 Jtag

Jtag is the only configuration method on the DN8000K10PCIE that does not use the Virtex 4 SelectMap configuration interface. When programming the user FPGAs over a JTAG cable plugged into J13, the DN8000K10PCIE configuration circuitry is not used.

A JTAG connection is required to use some Xilinx configuration tools like ChipScope, and readback from Impact. Configuration over JTAG is slower than SelectMap. You can still use the SmartMedia or USB interfaces to control clock settings if you plan to configure through JTAG.

To configure using JTAG, we recommend using Xilinx Parallel cable IV, or Xilinx platform USB cable. The Xilinx program. You should set the configuration speed of your JTAG cable to 4Mhz or below.

![FPGA JTAG (Cable IV)](image)

Figure 25 FPGA JTAG Header

The JTAG signals TMS is bussed to all three Virtex 4 FPGAs. TDO connects to FPGA A, the TDO of FPGA A is connected to TDI of FPGA B, the TDO of FPGA B connects to the TDI of FPGA C and TDO of FPGA C is connected to the TDI of J13. TCK is buffered and passed to each FPGA in a point-to-point fashion.

![JTAG Clock Buffer](image)

Figure 26 TCK buffer

The INITn signal is not used.
If you ordered your DN8000K10PCIE with one or more FPGAs not installed (Option FPGA A NONE, FPGA B NONE, or FPGA C NONE) then a bypass resistor is installed connecting the TDI pin to the TDO pin of the uninstalled FPGA. This is so the JTAG chain will remain intact when FPGAs are missing.

2.3.2 Media Card (SmartMedia or Compact Flash)

When the DN8000K10PCIE powers on, the microcontroller reads the contents of any Flash card that is in the Media Card slot. The microcontroller by default opens a file on the root directory named “Main.txt” if it exists. This file contains instructions for the configuration circuitry to configure the Virtex 4 FPGAs.

To create a SmartMedia card to control the DN8000K10PCIE configuration, insert the Media card into a card reader (provided) and connect it to a PC. Create a file on the root directory of the card and call it “Main.txt”

In main.txt, write a series of configuration commands, separated each by a new line. A valid command is one of the following:

```
// <comment>
FPGA A:<filename>
FPGA B:<filename>
FPGA C:<filename>
CLOCK FREQUENCY: <clockname> N <number> M <number>
SANITY CHECK: <yn>
VERBOSE LEVEL: <level>
RS232: <portnumer> <fpganame>
MEMORY MAPPED 0x<SHORTADDR> 0x<BYTE>
MAIN BUS 0x<WORDADDR> 0x<WORDDATA>
```
The following table describes the function of each of the available main.txt commands.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>// <comment></td>
<td>The MCU performs no operation and moves to the next command.</td>
</tr>
<tr>
<td>VERBOSE LEVEL: <level></td>
<td>This command will set the amount of output the MCU will produce over the RS232 port during configuration. When level is set to 0, the MCU will produce only error output. Before this command is executed, the level is set to the default value 3.</td>
</tr>
<tr>
<td>FPGA A:<filename></td>
<td>The Virtex 4 FPGA “A” will be configured with the file named by <filename></td>
</tr>
<tr>
<td>FPGA B:<filename></td>
<td>The Virtex 4 FPGA “B” will be configured with the file named by <filename></td>
</tr>
<tr>
<td>FPGA C:<filename></td>
<td>The Virtex 4 FPGA “C” will be configured with the file named by <filename></td>
</tr>
<tr>
<td>SANITY CHECK: <yn></td>
<td>If <yn> is set to y, then the MCU will examine the headers in the .bit files on the SmartMedia card before using them to configure each FPGA. If the target FPGA annotated in the .bit file header is not the same type as the FPGA the MCU detects on the board, it will reject the file and flash the error LED. Before this command is executed, <yn> is set to the default value y.</td>
</tr>
</tbody>
</table>

If you want to encrypt or compress your bit files, you will need to set <yn> to n. Encrypting bit files is not supported or recommended by Dini Group. Previous revisions of Xilinx parts have been vulnerable to permanent damage caused by bugs in the encryption circuitry.
MAIN BUS 0x<WORDADDR> 0x<WORDDATA>

Writes data in <WORDDATA> to the address on the main bus interface at <WORDADDR>. This command only makes sense in the context of the Dini Group reference design, unless your design implements a compatible controller on the main bus pins. The main bus interface is described in the reference design chapter.

MEMORY MAPPED 0x<SHORTADDR> 0x<BYTE>

Writes to an address in the MCU XDATA memory space. See the USB Software section for a list of valid addresses.

RS232: <port> <fpga>

The RS232 port (P1) will be controlled by the FPGA <fpga> if <port> is 1.

CLOCK FREQUENCY: <clockname> N <number> M <number>

The MCU will adjust the clock synthesizer producing clock <clockname> to multiply its reference frequency by <M> and divide it by <N>

Note that the clock synthesizers have a limited bandwidth, and for clocks A B and D, the reference frequency * M must fall in the range 250Mhz-700Mhz. For clock 2 (RocketIO), reference * M must fall between 540 and 680Mhz. See datasheets for parts ICS8442AY and ICS843020-01

The reference frequencies are

<table>
<thead>
<tr>
<th>Clock</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLK</td>
<td>25Mhz</td>
</tr>
<tr>
<td>BCLK</td>
<td>14.18Mhz</td>
</tr>
<tr>
<td>DCLK</td>
<td>16Mhz</td>
</tr>
<tr>
<td>2CLK</td>
<td>25Mhz</td>
</tr>
</tbody>
</table>

An example main.txt file:

```
VERBOSE LEVEL: 0
// This will prevent the MCU output over RS232 to speed up configuration
FPGA A:a.bit
//this will load the configuration a.bit into FPGA A
CLOCK FREQUENCY: A N 4 M 10
// This will cause Aclk frequency to be
// 25*10=250 / 4 = 62.5Mhz
MAIN BUS: 0x0000 0x0001
// Writes to a register in FPGA A.
```

USB

The USB interface on the DN8000K10PCIE is provided by the Cypress microcontroller unit. The Cypress microcontroller is programmed to interrupt when it receives a USB vendor request.

When the MCU receives over USB a Bulk Transfer type request, it does not interrupt. The raw data contained in the bulk transfer is driven out on the GPIF pins of the MCU (the SM[0-7]
signals) to the Spartan 2. The data is clocked out using the MCU_IFCLK clock signal to the Spartan 2. As long as the signal GPIF_CTL is held high by the MCU, the Spartan 2 clocks MCU_IFCLK to receive the USB data.

When data is written to the Spartan 2 from a bulk transfer over the MCU’s GPIF interface, the Spartan 2 either writes that data onto the SelectMap interface of the Vitex4 FPGAs, or onto the Main bus using the Main Bus interface described in the Reference Design chapter.

The control register FPGA_SELECT within the Spartan 2 determine to which interface this data is routed to.

2.4 FPGA configuration Process

For information regarding the JTAG interface and configuration, See Xilinx publication UG071, Virtex 4 configuration guide.

When configuring over USB or SmartMedia, the FPGAs are configured over the Virtex 4 SelectMap bus.

All SelectMap signals are connected directly to the Spartan2 FPGA. The SelectMap signals are:

- **D[0-7]**: SelectMap data signals.
- **PROGRAM_B**: Active low asynchronous reset to the configuration logic. This will cause the FPGA to become unconfigured. The documentation refers to this signal as PROGn
- **DONE**: After the FPGA is configured, it is driven high by the FPGA.
- **INIT**: Low indicates that the FPGA configuration memory is cleared. After configuration, this could indicate an error.
- **RDWR_B**: Active low write enable. The Documentation refers to this signal as RDWR
- **BUSY**: When busy is high, the SelectMap configuration stream must stop until BUSY goes low.
- **CS_B**: SelectMap chip select. The documentation refers to this signal as CSn
- **CCLK**: Signals D[0:7], DONE, RDWR_B and CS_B are clocked on CCLK

Each Virtex 4 FPGA has a complete set of SelectMap signals connected point-to-point to the Spartan 2, except for FPGA B and C, who share signals D[0-7]. All signals are 2.5V CMOS signals except for D[0-7] of FPGA A (Signals SELECTMAP_3V_D[0-7]), which are 3.3V CMOS.
All commands required to configure a Virtex 4 FPGA are created and embedded in the .bit files created by the Xilinx Bitgen program. The DN8000K10PCIE does not interact with the SelectMap interface other than to reset the FPGA using the PROGn-INTn-PROGn reset sequence described in UG071, and to copy a bit stream file unaltered to the FPGA over the data pins D[7-0]. Select map commands can be issued to the Virtex 4 FPGA from the host using the same interface used to configure and FPGA.

After a Virtex 4 FPGA is configured, it asserts the signal DONE. On the DN8000K10PCIE, these signals have an LED attached to each DONE signal placed near the upper corner of each FPGA.

FPGA A’s LED is DS18, B is DS14, C is DS16 (DS15 on 8-lane)

If your Virtex 4 FPGA design is failing to produce the intended (or any) results, you should check the DONE light above the FPGA to make sure it is configured correctly. The design files created by Xilinx bitgen software contain a CRC check, so if the Virtex 4 FPGA detects a CRC failure, there was a transmission error during configuration and the DONE light will not glow. The DN8000K10PCIE microcontroller also checks the design files you send to make sure they are compiled for the FPGAs that are installed on your board. If they are not, then the microcontroller unit halts the configuration process. As a result, when the DONE light goes on, you will know that the configuration process was successful.

2.5 MCU

The operation of the Spartan II is monitored and controlled by a Cypress CY7C68013 microcontroller. The microcontroller also has a USB 2.0 interface that can be used to monitor the board, control configuration, or transfer data to and from the user FPGA design. Basic operation can be controlled over an RS232 link from a computer terminal.

2.5.1 RS232

The primary method of user interaction with the DN8000K10PCIE configuration circuitry is the MCU’s RS232 port (P2). The Cypress CY7C68013 has two RS232 pins that are buffered through a 12V voltage translation buffer for use with a standard computer serial port.
The RS232 port will be able to communicate with a standard PC serial port set to 19200 baud, 8 data bits, no parity, no handshaking. When you connect a computer terminal to the port and power on the DN8000K10PCIE, the firmware loaded on the microcontroller unit will display a menu on the terminal. This menu will allow you to control the basic configuration options of the DN8000K10PCIE including configuration, clock frequencies, and the Virtex 4 FPGA RS232 ports.

2.5.2 Clocks

The Cypress CY7C68013 is also responsible for configuring the global clocks and RocketIO clock of the DN8000K10PCIE. The Cypress CY7C68013 MCU reads the file “main.txt” from the SmartMedia card in the socket (J24), and follows the users clock configuration commands.

The 3 ICS8442 clock synthesizers on the DN8000K10PCIE used for generating the global clocks, ACLK, B CLK and DCLK, share a serial configuration bus connected to the MCU to
program them. The ICS8442 frequency synthesizers are capable of multiplying and dividing the reference frequencies provided by their reference crystals. The MCU loads the user’s desired multiplication “M” value, and division, “N” value into the settings registers in the ICS8442 chip.

2.5.3 LEDs
The MCU is connected to 4 red LEDs that are visible from outside the PC case when the DN8000K10PCIE is plugged into a PCIe slot (1-lane only). The LEDs flash a status code during and after configuration.

All four flashing LEDs means there has been an error configuring at least one FPGA.

2.5.4 Memory space
The XDATA memory space of the MCU is partitioned into four sections.

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>0x1FFF internal data/program memory</td>
</tr>
<tr>
<td>0x2000</td>
<td>0xCFFF external SRAM</td>
</tr>
<tr>
<td>0xDFF0</td>
<td>0xDFFF memory mapped registers (no external memory accesses)</td>
</tr>
<tr>
<td>0xE000</td>
<td>0xFFFF reserved by MCU, RD/WR strobes not active in this region</td>
</tr>
</tbody>
</table>

The internal data memory region is mapped to an internal SRAM in the Cypress MCU. When the microcontroller code calls memory access from this region, the external Address and Data busses are not used. After power on reset, the MCU reads from the IIC Eprom connected to the MCU_EPROM signals and fills this internal memory before allowing the PC to run. The code in this section of memory contains core functions of the Dini Group firmware, like setting up the interrupt registers, communicating with USB, and allowing firmware updates.

The external SRAM is used for heap data.

The memory mapped register region (The DF region) contains registers in the Spartan 2 FPGA that control FPGA configuration.

The program memory space of the MCU is directly mapped to the external Flash memory.

When the Cypress MCU is reset (which happens after the Spartan 2 is configured), it loads its boot code into its 8kB of internal memory from a serial EEprom (U13). The code in the EPROM instructs the MCU to execute code located on the FLASH memory (U19). The code in the EEPROM and FLASH is located on the user CD.
Communication over the MCU memory bus to the Spartan 2 is synchronized to the 24Mhz MCU_CLK (X3). For information regarding the timing of transactions on this bus, see the Cypress CY7C68013 user manual.

<table>
<thead>
<tr>
<th>Register Name</th>
<th>XDATA Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>DF00</td>
<td>Used when reading from SM but not configuring</td>
</tr>
<tr>
<td>COMMAND</td>
<td>DF01</td>
<td>Commands for the SM</td>
</tr>
<tr>
<td>Symbol</td>
<td>Register</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>ROW_LADDR</td>
<td>DF02</td>
<td>Holds lower 8-bits of SM address</td>
</tr>
<tr>
<td>ROW_HADDR</td>
<td>DF03</td>
<td>Holds upper 8-bits of SM address</td>
</tr>
<tr>
<td>ROW_XADDR</td>
<td>DF04</td>
<td>Holds extra bits of SM address</td>
</tr>
<tr>
<td>NUM.Bytes_0</td>
<td>DF05</td>
<td>Holds lower 8-bits of the number of bytes to read</td>
</tr>
<tr>
<td>NUM.Bytes_1</td>
<td>DF06</td>
<td>Holds upper bits of number of bytes to read in</td>
</tr>
<tr>
<td>BITS_1</td>
<td>DF07</td>
<td>BIT7: mcu_fpga_config_rd BIT6:</td>
</tr>
<tr>
<td>BITS_2</td>
<td>DF08</td>
<td>BIT4: FPGA_DONE BIT3 CPLD_idle BIT2:</td>
</tr>
<tr>
<td>SM_SIGNALS</td>
<td>DF09</td>
<td></td>
</tr>
<tr>
<td>MCU_XADDR</td>
<td>DF0A</td>
<td>Address register for upper FLASH/SRAM bits</td>
</tr>
<tr>
<td>MCU_CNTL</td>
<td>DF0B</td>
<td>Address register for upper FLASH/SRAM bits</td>
</tr>
<tr>
<td>FPGA_SELECT</td>
<td>DF0C</td>
<td>FPGA_select[5:0] = bits 5:0</td>
</tr>
<tr>
<td>PPC_RS232_ABSELECT</td>
<td>DF0D</td>
<td></td>
</tr>
<tr>
<td>PPC_RS232_CDSELECT</td>
<td>DF0E</td>
<td></td>
</tr>
<tr>
<td>FPGA_CNTRL</td>
<td>DF0F</td>
<td>bits[1:0] = 01 (write address), 10 (data write), 11 select byte in addr,</td>
</tr>
<tr>
<td>FPGA_BE</td>
<td>DF10</td>
<td>read, and data bytes</td>
</tr>
<tr>
<td>FPGA_RD_DATA</td>
<td>DF11</td>
<td></td>
</tr>
<tr>
<td>FPGA_WR_DATA</td>
<td>DF12</td>
<td></td>
</tr>
<tr>
<td>FPGA_ADDR</td>
<td>DF13</td>
<td></td>
</tr>
<tr>
<td>FPGA_ERROR</td>
<td>DF14</td>
<td></td>
</tr>
<tr>
<td>GPIF_DATA</td>
<td>DF20</td>
<td></td>
</tr>
<tr>
<td>GPIF_ERROR</td>
<td>DF21</td>
<td></td>
</tr>
<tr>
<td>HOLD_DONES</td>
<td>DF22</td>
<td></td>
</tr>
<tr>
<td>FPGA_FREQ_H</td>
<td>DF24</td>
<td></td>
</tr>
<tr>
<td>FPGA_FREQ_SEL</td>
<td>DF25</td>
<td></td>
</tr>
<tr>
<td>FPGA_FREQ_L</td>
<td>DF26</td>
<td></td>
</tr>
<tr>
<td>MCU_STUFFING1</td>
<td>DF27</td>
<td></td>
</tr>
<tr>
<td>MCU_STUFFING2</td>
<td>DF28</td>
<td></td>
</tr>
<tr>
<td>SERIAL_CLK_CTRL_0</td>
<td>DF29</td>
<td></td>
</tr>
<tr>
<td>SERIAL_CLK_CTRL_1</td>
<td>DF30</td>
<td></td>
</tr>
<tr>
<td>MB80_1_CTRL0</td>
<td>DF36</td>
<td></td>
</tr>
<tr>
<td>MB80_1_CTRL1</td>
<td>DF37</td>
<td></td>
</tr>
<tr>
<td>MB80_2_CTRL0</td>
<td>DF38</td>
<td></td>
</tr>
<tr>
<td>FPGA_COMMUNICATION</td>
<td>DF39</td>
<td></td>
</tr>
<tr>
<td>MB80_2_CTRL1</td>
<td>DF40</td>
<td></td>
</tr>
<tr>
<td>MB64_1_CTRL</td>
<td>DF41</td>
<td></td>
</tr>
<tr>
<td>MB64_2_CTRL</td>
<td>DF42</td>
<td></td>
</tr>
<tr>
<td>MB64_3_CTRL</td>
<td>DF43</td>
<td></td>
</tr>
<tr>
<td>CPLD_CS_N_CTRL</td>
<td>DF44</td>
<td></td>
</tr>
<tr>
<td>CPLD_DATA</td>
<td>DF45</td>
<td></td>
</tr>
<tr>
<td>CPLD_ADDR</td>
<td>DF46</td>
<td></td>
</tr>
<tr>
<td>GCLK_MSEL_CTRL</td>
<td>DF47</td>
<td></td>
</tr>
</tbody>
</table>
These registers can be written to from the USB interface. See *USB Software: Programmers Guide*.

These registers can also be written to using the MEMORY MAPPED: command from the main.txt interface (SmartMedia or CompactFlash). See *Configuration Options/Media Card*.

2.5.5 USB

The Cypress CY7C68013 has a built-in USB 2.0 interface. The USB type B connector on the DN8000K10PCIE (J12) is connected directly to the USB pins on the Cypress MCU.

The USB protocol is completed by the Cypress CPU.

The Cypress receives a 24Mhz clock from an oscillator (X3). The Cypress internally multiplies this clock to 480Mhz for USB 2.0 and 48Mhz for GPIOF operation. The core runs at 24Mhz along with the external memory interface. Communication over this external memory interface is clocked using the MCU_IFCLK signal driven from the MCU at 48Mhz. (The Spartan communicates over main bus with the Virtex 4 FPGAs using a separate 48Mhz oscillator (X1) and distributes this clock to each FPGA including itself)
2.5.6 Smart media/CompactFlash

The SmartMedia card socket pins are bussed among the Cypress MCU GPIF pins, the Spartan 2 FPGA IOs, and the SmartMedia card socket. After reset, the MCU uses this connection to look for and read the contents of the file main.txt on the SmartMedia card. The main.txt file contains instructions for configuring the user design into the three Virtex 4 FPGAs.

After reading the configuration instructions, the MCU reads the headers of the user’s FPGA design (“.bit”) files and verifies that they target the correct type of FPGA that are installed on your DN8000K10PCIE. This behavior can be turned off if you have generated unusual .bit files (for readback or partial reconfiguration, etc.)

If this check is passed, MCU uses its memory mapped interface with the SpartanII to instruct the SpartanII to read the Media card and configure the Virtex 4 FPGAs over SelectMap bus.

3 Clocking

The clocking circuitry on the DN8000K10PCIE is designed for high-speed operation. The flexible clock design should meet the most difficult clocking needs, allowing 8 totally asynchronous, controllable clock sources for each FPGA.

ACLK, BCLK, DCLK, FBACLK, FBBCLK, DDRFBCLK, DDRREFCLK, UCLK are differential, LVDS signaled clocks. The user should use a IBUFDS module in their HDL to receive these clocks on inputs

RCLK0, RCLK1, RCLK2 and RCLK3 are differential LVPECL signals. The user doesn’t need to instantiate inputs for these in their HDL because these clocks are automatically routed by the ISE tools when rocketIO is used.

SYSCLK, SCLK1, SCLK2, are 2.5V LVCMOS signals.

PCLK is a 2.5V SSTL2 signal.
Figure 31 DN8000K10 clocking
From the above diagram, the global clocks are listed here.

RCLK0,1 – An ICS frequency synthesizer, an ICS84020 (up to 667Mhz). This clock is configured from the MCU using the USB controller or the main.txt file (SmartMedia CompactFlash). This clock is supplied to MGT_CLK pins on FPGA C and can be used as an MGT reference clock for any MGT tile on the left column. The Synthesizer can also be configured to use an external clock input from the QSE-DP Samtec RocketIO connector J3. (Contact Dini Group support for instructions if this clock path is required.)

RCLK2/3 – An Epson 250Mhz oscillator. This clock can be used to supply an MGT reference clock to FPGA C in either the right of left columns.

ACLK, BCLK, DCLK. These global clocks are supplied by ICS8442 frequency synthesizers. They are configured from the MCU to output a user-specified frequency from 31 to 700Mhz. They are each distributed to FPGAs A B and C. (The maximum usable frequency by the FPGAs is 500Mhz)

SCLK1/2 – These single-ended clocks run at low-speed and are controllable from the USB interface, allowing for software that controls single-stepping designs. Both clocks are delivered to FPGAs A B and C. The clock is sourced directly from the Spartan 2 configuration FPGA. (These signals have no defined control interface. Contact Dini Support if these clock paths are required)

Sysclk – this 48Mhz, single-ended clock is driven from the configuration FPGA at a fixed frequency. It is delivered to FPGAs A, B, C and the configuration FPGA. This clock is used by the Dini Group reference design to clock the Main Bus interface.

MCU clk- this reference clock is used by the MCU to generate frequencies required for the USB protocol. It is not available to the user.

UCLK – This differential clock input is delivered to FPGA A. It connects directly to a pair of external SMA connectors.

FBACLK – This differential clock is driven from FPGA A and delivered to FPGA A, B and C. This clock can be used for controlled-clocks, odd clock division and multiplication, or forwarding a clock from one FPGA to another.

FBBCLK – This differential clock is driven from FPGA B and received at FPGA A, B and C.

HACLK – This differential clock is driven from the daughtercard header A to FPGA A.

HBCLK – This differential clock is driven from the daughtercard header B to FPGA B.

DDRACLK, DDRBCLK – This differential clock is driven by the FPGA to its associated DDR2 Sodimm header. A copy of the clock is externally buffered and the clock is received on the FPGA synchronized with its arrival at the SODIMM on the signal DDR_FBCLK.
PCLK – This SSTL25 signal is driven from the PCI express PHY to the FPGA A. It runs at a fixed 250Mhz (when the phy is in its default mode). This clock cannot be used by FPGAs B and C.

3.1 Global Clocks
The three main global clocks are driven by ICS8442 clock synthesizers, each capable of producing frequencies of 700Mhz (or greater). The clock synthesizers can be programmed from main.txt file (SmartMedia and CompactFlash card), from the GUI application (See Chapter 3, controller software)

Each ICS8442 has an internal multiplication PLL that can operate between 250 and 700 Mhz. With 1, 2, 4, or 8x division on the output, the possible output frequencies are 31.25 – 700Mhz. VCO_SEL can be used to disable the PLL, so ACLK BCLK and DCLK can operate at their fundamental 25Mhz, 14.3Mhz and 16Mhz respectively. (This function has not defined control interface. Contact Dini Group support)

The Serial configuration bus is connected to the Cypress MCU. The crystals required to supply a reference to the ICS8442 synthesizers are:
parallel resonant
fundamental mode
18pf
The 8442 outputs are connected to a 1:8 LVDS buffer, and distributed to the FPGAs. Aclk and Bclk are also distributed to the expansion headers as well.

Each global clock is delivered to the FPGA as an LVDS, differential clock. The IO input on this clock should be configured as a differential clock input (the IBUFGDS primitive).

The example below shows the Verilog instantiation of this module, using the ACLK signal.

Wire aclk_ibufds;
IBUFGDS ACLK_IBUFG (.O(aclk_ibufg), .I(ACLK), .IB(ACLKn)) ;

The signal aclk_ibufds should then be fed to either a BUFG or a DCM before being used as an internal clock for FPGA logic.

3.2 User Clock
The DN8000K10PCIE has an SMA pair reserved specifically for inputing a clock. The SMA pair is connected to a differential clock input on FPGA A (LVDS_DCI is a preferred input standard, but LVCMOS_25 will work also).
To use this clock in a synchronous design, send a copy of the clock out through the FBA (Feedback A) clock output pairs A, B and C.

3.3 Feedback Clocks

User FPGA A and B each are capable of sourcing a clock that is distributed to all FPGAs (including back to itself). These “feedback clocks” allow the user to control a clock from inside the user design for single-stepping, multiplication/division, or distributing a clock to which only one FPGA has access (like a header clock, or the user clock input).

FPGA A has 6 feedback outputs, one differential pair to each Virtex 4 FPGA.

FBACLKAp/FBACLKAn, FBACLKBp/FBACLKBn, FBACLKCp/FBACLKCn

FPGA B has 6 feedback outputs, one differential pair to each Virtex 4 FPGA.

FBBCLKAp/FBBCLKAn, FBBCLKBp/FBBCLKBn, FBBCLKCp/FBBCLKCn

Clocks can also be exchanged from one FPGA to another on the source-Synchronous clock inputs. See Chapter X, Section X, FPGA interconnect.

4 Reset Topology

The DN8000K10PCIe is protected from undervoltage and over temperature by a reset circuit. When the board powers on, a voltage monitor waits until all voltages are above their minimum.
voltage levels, then deasserts reset. The Spartan 2 distributes the reset signal to all FPGAs and the Microcontroller unit, so until the Spartan 2 is configured, reset remains asserted.

The user may also assert reset by pressing S3, “Hard reset” This will trigger the reset signal “SYS_RSTn” which is monitored by the Spartan FPGA. When SYS_RST is asserted, the Spartan FPGA resets the Virtex 4 FPGAs, causing them to lose their configuration data and deactivate. The Spartan also causes a reset on the Microcontroller unit, which will cause the microcontroller to reload configuration instructions from the Smart Media card. USB contact will be lost with the USB host, and the DN8000K10PCIE will have to re-enumerate.

There is a second button, S2 called “Soft Reset”. When this button is pressed, the signal “RESET_FPGAs” is asserted. This signal is sent to the Virtex 4 FPGAs on a user IO pin, and could be used by the user design as a reset signal. This signal is also asserted to all FPGAs after any FPGA becomes configured. RESET_FPGAs is an asynchronous signal.

The above circuit shows how two LTC2900 voltage monitors are daisy chained together to monitor 5 different voltages.
Each FPGA is also connected to a temperature monitor. The Virtex 4 FPGA can easily overheat if a heatsink and fan are not used. The recommended operating temperature for the Virtex 4 is 85 degrees C. The absolute maximum temperature for operation is 125 degrees C. If at any time the junction temperature of the Virtex 4 exceeds 85 degrees, the Microcontroller will reset the FPGAs, causing them to lose their configuration data. An overheating FPGA could be the result of a misconfiguration, a clock that is set incorrectly, or an inadequate heatsink unit. The heatsink and fan assembly that comes with the DN8000K10PCIE is appropriate for dissipating the amount of heat energy available through a PCI slot without the auxiliary power connector (25W total for the card). If you are operating the DN8000K10PCIE at very high speeds in stand alone mode and you are causing heat overload resets, you may need to install a larger heatsink, or increase the system airflow.

This circuit shows the MAX1617 temperature monitor. The IIC bus is connected to the Cypress microcontroller.

5 Power

The DN8000K10PCIE gets its power from the 12V and 3.3V rails of the PCI Express card edge connector. It can also be operated in stand-alone mode with a 20-pin ATX power supply connector.

The PCI slot is capable of sourcing 25W.
The main rails of the DN8000K10PCIE are:

- **1.2V** – This is the main power supply rail used for the internal digital logic of Virtex 4 FPGAs.

- **1.8V** – This is used for IO signaling and internal logic of DDR2 SDRAM memory. It is also used to supply some Gigabit optical modules, and is used as a low-power current source to supply RocketIO isolated power rails.

- **2.5V** – This is used to power FPGA interconnect with low-power LVDS. It is also used as the analog power supply on the Virtex 4 FPGAs.

- **3.3V** – This voltage supplies the LVDS clock distribution trees. It is also used to power the LVTTI interfaces of the Cypress microcontroller.

- **12V** – This voltage is used to supply power to the 1.2, 2.5, 5.0 and 1.8V switching power supplies. It also powers the FPGA cooling fans. If the PCI slot isn’t providing enough power, then a Hard Drive 4-pin power cable can be connected to the board (from the same ATX power supply) to reduce the voltage droop on 12V. Please note that the board is capable of exceeding the 25W limit of the PCI connector (depending on the design of the FPGAs utilized, and the operating frequency).

- **5V** – This voltage supplies some RocketIO power.

The DN8000K10PCIE also has these secondary rails:

- **0.9V** – This voltage is used to terminate the SSTL18 signaling of the DDR2 memory module. Current is drawn from 3.3V.

- **RocketIO 1.2V top, 1.2V right, 1.2V bottom** – These linear regulated rails are very low noise supplies for the RocketIO CML inputs and outputs, and RocketIO logic. They are isolated from each other to improve the isolation of multiple RocketIO channels operating simultaneously.

- **RocketIO 1.5V** – This linearly regulated voltage rail supplies the internal digital logic of the RocketIOs.

- **RocketIO 2.5V** – this linearly regulated voltage rail supplies the internal analog circuits of the RocketIO.

- **-12V** – This rail is passed directly from the PCI edge connector and ATX power connector to the Micropax expansion header. See Chapter X, Section X, Expansion Headers. Note that the fuse between -12V and the expansion headers is not installed on the board.
- XFP VEE5 – Power for this rail is not supplied by the DN8000K10PCIE, but is required for the operation of ECL optical modules. To power this rail, you will need to connect an external power connector to the board from a low-noise voltage supply.

There are test points for measuring the voltage levels of each rail near the top left of the DN8000K10PCIE. Each rail is monitored by a voltage monitor circuit, and will cause a reset if any of the primary supplies drop 5% or more below their setpoints.

There are also LEDs next to each testpoint to indicate the presence of each voltage rail. These LEDs do not indicate that a rail is within 5% of its setpoint, only that the rail is present and above ~1.6V. A power OK led shows the status of the ATX power supply’s PWR_OK signal. If this LED is lit, then +5.0V and +3.3V (and +12V –12V) are within 5% of their setpoints.

5.1 Switching power supplies

The main power rails for the Virtex 4 FPGAs are produced on board with three 20A switching power supplies, one for each of 1.8V, 2.5V, and 1.2V.

The DN8000K10PCIE is shipped with a fan mounted above the power supplies to help keep them cool. If you need to remove this fan, the DN8000K10PCIE will function properly without it, but be careful not to touch the power supplies with your fingers because they will burn!

Each power supply is protected with a 15A fuse on the inputs. If you need to operate the DN8000K10PCIE with more than 15A of current for a power supply, you can change this fuse, but you need to find a heatsink solution for keeping the Virtex 4 FPGAs cool. The heatsink and fan provided are appropriate for a power consumption of about 10-15W per FPGA.
Each of the primary power rails (5.0, 3.3, 2.5, 1.8, 1.2) is monitored for undervoltage. If the voltage monitor circuit detects a low voltage, it will hold the board in reset until the supply is back within 5% of its setpoint. See section X, Reset Circuit for information on reset.

5.2 Secondary Power Supplies
The secondary power supplies are derived from a primary supply.

5.2.1 DDR2 Termination Power
DDR2 memory modules use the SSTL18 signaling standard. Properly terminating SSTL18 requires a termination power supply of 0.9V. Since as much as 1.6 Amps of termination current are needed, a switching power supply is required.

The ML6554 produces up to 3A of the required 0.9V termination power rail along with a stable 0.9V reference voltage supply.
5.2.2 RocketIO power

Five linear rails

5.2.3 Optical Module Power

Optional optical modules have a variety of power supply requirements, most of which are met by the DN8000K10PCIE.

XFP power filtering

Since the DN8000K10PCIE has no negative voltage supply, it cannot generate the −5.2V required to supply ECL-based optical transceiver modules. An auxiliary power connector is supplied to connect to an external voltage supply if ECL signaling is required.
5.3 Heat dissipation

Virtex 4 FPGAs are capable of drawing incredible amounts of current from their 1.2V and 2.5V power supplies. According to Xilinx online power estimator tool, a fully utilized FPGA running at 300Mhz can draw more than 30W of power. With this much power used in each FPGA, the DN8000K10PCIE can dissipate 75 or more Watts of heat. For all but the most trivial designs, a heatsink must be used with the Virtex 4 FPGA. The DN8000K10PCIE comes with a forced air heatsink rated at 2 degrees per Watt. Since the maximum operating junction temperature of a Virtex 4 FPGA is 85 degrees, assuming an ambient temperature of 50 degrees (the inside of your computer case) the most amount of energy dissipated by the FPGA using the standard fan is 85 – 30 / 2 = 27.5W. This should be sufficient for most applications. If you intend to operate the Virtex 4 FPGA at very high speeds, or are getting overheating issues with your design, you will need to install a larger heatsink.

Above: The FPGA temperature monitor circuit. The MAX1617’s IIC bus is connected to the Cypress MCU.
Above: Cooling fan power connector.

6 FPGA interconnect

The DN8000K10PCIE was designed to maximize the amount of interconnect between the two primary Virtex 4 FPGAs A and B. This interconnect was routed as tightly coupled differential LVDS to provide the best immunity to power supply and crosstalk noise so that your interconnect can operate at the full switching speed of the output buffers. Following Xilinx recommendations, the interconnect on the DN8000K10PCIE was designed to operate at 1Gb/s for every LVDS pair. (Note 1Gb/s operation requires the fastest speed-grade part, LX200 –12) In order to achieve such breakneck speeds, you will need to operate the busses of signals using a source-synchronous clocking scheme. The interconnect signals on the DN8000K10PCIE have been optimized to operate in “lanes” There are 7 lanes between FPGAs A and B, three between B and C and two between FPGAs A and C. Each lane has a differential LVDS source-synchronous clock in each direction. You can get a summary of the FPGA interconnect signals in the customer netlist provided on the user CD, or using the UCF files used for the LVDS reference design.

Clocking incoming data at high speeds required the used of the each input’s delay buffer to align each bit. The incoming clock needs to be adjusted and used to clock the inputs within its lane. This process can be automated by the use of the new Virtex 4 feature IDELAYCTL.
For detailed description of the required user design to achieve 1Gbs operation, see Xilinx Application note XAPP704, “High Speed SDR LVDS Transceiver’.

Synchronous clocking and single-ended signaling are still possible on the DN8000K10PCIE, you are not required to use highspeed serial design techniques. Single ended interconnect is recommended for signaling below 133Mhz. Because of the DN8000K10PCIE’s excellent low-skew clocking network, global synchronous clocking should work fine for your interconnect at speeds lower than 300Mhz. The source synchronous clock signals can also be used as single ended or differential interconnect, or to forward clocks from one FPGA to another.

The total interconnect counts between FPGAs

- A-B 378
- B – C 154
- A – C 112

7 Memory interface

There are two standard 200-pin DDR2 SODIMM module sockets on the DN8000K10PCIE. These sockets are supplied with 1.8V power and keyed for use with DDR2 SDRAMs. One socket is connected to FPGA B and the other is connected to FPGA C.

7.1 Clocking
SODIMM interfaces:

7.2 Serial presence detect.
The EEPROM on the SODIMM is accessible by PCI, USB, or configuration UART.

8 Headers

There are two daughtercard headers on the DN8000K10PCIE; one attached to FPGA A (Header A), and one attached to FPGA B (Header B). Header A contains 135 user IOs designed to operate as 134 differential pairs. Header B has 154 user IOs that can be used as 77 differential pairs.
The signals RESET_FPGAs is driven by the Spartan Configuration FPGA. This signal is the same as the RESET_FPGAs driven to FPGAs A B and C.

PDETECTA and PDETECTB are single-ended signal with an external pull up resistor. The daughtercard can ground these signals to indicate the daughtercard’s presence.

The HAp/nCC and HBp/nCC signals are connected to global clock input pins on the FPGAs. These can be used as differential clock inputs from the daughtercard headers to the FPGAs. They can also be used as outputs.

The ACLK and BCLK signals are copies of the DN8000K10PCIE global differential clocks ACLK and BCLK. The signals are synchronized at the daughtercard connector with the ACLK and BCLK signals at the pins of the FPGA.

Header B has more signals than Header A. A daughtercard designed to work with header A will work with header A.

8.1 3000K10 Compatibility
The DN8000K10PCIE headers use pinout similar to that on the DN3000K10. A compatibility chart with the DN3000K10SD and Mictor daughtercards is given on the user CD in the daughtercard directory.

8.2 FPGA Connection
On the DN8000K10PCIE, all header signals are connected to “LC” pins on the Virtex 4 FPGA. See the Virtex 4 User’s Guide for detail about these signals. The main result of this is that the headers on the DN8000K10PCIE may not be used with the Virtex 4’s current-mode LVDS drivers. Virtex 4 LVDS receivers may still be used. Outputs compatible with LVDS can still be achieved using the proper selectIO driver settings and termination.
On both Header A and Header B, there is a bank that is dedicated entirely to the Headers. For details about Virtex 4 IO banks, see the Virtex 4 user guide. This bank can be used for standards requiring a threshold voltage reference, such as SSTL. You can also use this bank for source-synchronous clocking.

8.3 Getting LVDS on the header

Since all of the FPGA pins connected to header A and header B are “LC” pins, the Virtex-4 “LVDS” standard cannot be used as outputs. LVDS signaling is still possible.

On inputs, use the LVDS25 standard.

On outputs, use two LVCMOS25 DRIVE=2 SLEW=FAST. On the daughtercard, terminate the signal with the following circuit.
This circuit terminates the differential signal at the destination with 100-Ohms differential impedance. It also divides the voltage produced by the LVCMOS25 buffers down to a $<400\text{mV}$ differential voltage. The power requirement for this IO remains fixed at 6.2mA regardless of frequency of operation.

8.4 IO Power

The IOs connected to the headers on the Virtex 4 FPGAs are powered with a $+2.5\text{V}$ power rail.

8.5 Physical

Micropax part number FCI 91294-003

The standard Dini Group mounting hole location for all 200-pin Micropax connections is (430 mils)

8.6 Daughtercard Power

Power is supplied to the daughtercard though dedicated power supply pins. The maximum allowed current for each of the daughtercard supplies is

- $5.0\text{V} – 1\text{A}$
- $3.3\text{V} – 1\text{A}$
- $2.5\text{V} – 1\text{A}$
- $12\text{V} – 250\text{mA}$
- $-12\text{V} – 250\text{mA}$

The 12V and -12V supplies are by default disconnected by removing the series jumper resistors R413, R412, R411, R414. This help prevent accidental damage due to careless probing. The 12V and -12V supplies may be able to source as much as 0.5A of current if the current can be supplied by the host PC.
8.7 The Mictor

There is a Mictor connected designed to be used with an agilent logic analyzer. Risewatch power PC debugger can also be used over this connection.

Figure 32 Mictor Header
9 LEDs

(Figure 33 FPGA C LEDs)

FPGA A is connected to 8 green LEDs (4 LEDs on 8-lane version). FPGA C is connected to 16 LEDs. These LEDs can be used for the user design. The brightness of these LEDs can be controlled by changing the output standard on the LED signals from 2, 4, 12, 16 or 24mA. Also, pulsing can be used to reduce the brightness of these LEDs.

10 RocketIO

10.1 RocketIO Clock Resources

Since it is impossible to determine during manufacturing the clocking requirements of every possible end application, the DN8000K10PCIE comes with a flexible clock network capable of a wide range of serial frequencies, while maintaining the tight jitter requirements of the 10 Gigabit serial transcievers.
The RocketIO clock tree is driven by a synthesizer and two oscillators, and dedicated multiplexers inside the Virtex 4 FPGA allow the user to switch between these clock sources.

The RocketIos on the Virtex 4 FPGA is divided into two columns, X0 and X1. The clock network of each column is separate and clocks may not be shared between the two columns. Each column has two clock distribution trees and two clock inputs. Each tree can be driven by a clock input, by a clock from a global clock input (not recommended) or by a recovered clock. Finally, each tile has a multiplexer than can select from one of the two clock trees to clock that entire tile.

The diagram above shows the two RocketIO columns and the connectivity of each.

Once a clock is routed to an MGT tile, that clock can be multiplied and divided by the MGT tile.

Most users will want to use the frequency synthesizer for generating RocketIO reference clocks. The ICS843020-01 synthesizer is very low jitter and should suitable for operation up to 6Gbs RocketIO operation. The frequency of the synthesizer can be adjusted through the main.txt file on the SmartMedia card, or through the USB GUI program.
The LVPECL outputs of the ICS843020 are scaled down to meet the input requirements of the MGTCLK inputs.

An output from the ICS843020-01 is also converted to LVDS and driven to J3 pins 19 and 21, the Samtec QSE-DP connector. This can be used to forward a RocketIO clock off board along with rocketIO signals to support standards that require an exact reference clock, like PCI Express. J3 may also drive pins 20 and 22. The ICS843020-01 can receive this clock and use it to generate a frequency for the MGTCLK inputs.

For 10Gb serial transmission rates, you should use one of the low-jitter fundamental frequency SAW oscillators. These oscillators operate at 250Mhz and so cover the gaps in the frequency synthesis options given by the ICS843020-01.
Figure 36 MGT PECL Oscillators

There are two Epson2101CA SAW oscillators, U51 and U48. Each one drives a MGTCLK on to one side of the

The ICS843020-01 Frequency Synthesizer is a very low phase noise. With the default 25Mhz oscillator, the frequency synthesizer is capable of producing frequencies in the ranges 71.875-84.375, 143.75-168.75, 287.5-337.5, and 575-675 Mhz.

10.2 MGT Power network
The RocketIO strict power supply constraints require the use of heavy power supply filtering. The RocketIO’s three power rails are each generated by a linear voltage regulator.

10.3 The connections
The following sections list the individual RocketIO connections.

10.4 Samtec Multi Gigabit ribbon cable
For board-to-board high-density connections, two Samtec ribbon cable connectors (J2 and J3) are connected to RocketIO. The pinouts on the cable allow two DN8000K10PCIE boards to
be connected to each other for a total of 10 bi-directional channels operating at 5Gbs per channel, per direction.

The Samtec part number (J2, J3) QSE-014-01-F-D-DP-A

An appropriate crossover cable for cabling two DN8000K10PCIEs together is the Samtec EQDP-014-09.00-TBR-TBL-4
Each connector also has a clock input that can be routed to the MGT CLK of FPGA C to allow standards that require transmitting at an exact frequency, such as PCI Express.

10.5 Optical Modules

The DN8000K10PCIE comes with two optical module connectors. If you need to interface to a specific standard, the easiest way is to buy an SFP or XFP module that supports that standard.
10.5.1 SFP

SFP modules support 1-4.5Gbs serial transmission rate.

Two red LEDs show the status of the channel. The LOS LED indicates that the far end transmitter is not operating, the cables are not secured or matched to the transmitter wavelength. The FAULT LED indicates a transmission laser failure, or an unsecured module.
10.5.2 XFP

XFP modules are the fastest optical modules that do not require a •

The XFP specification allows for an optional –5.2V power supply to be provided by the host board for ECL transmitter modules. The DN8000K10PCIE provides no –5.2V power, so a mounting point (U1) is provided for the use of a bench supply if ECL signaling is required.

Some XFP modules may require a reference clock to retime the transmitted signal (The REFCLK signal in the XFP specification). The REFCLK signal is connected to a RocketIO output on FPGA C. The REFCLK signal should be 1/64 of the data rate driven onto the XFP’s TX pins. To drive this signal, See Xilinx Application note XAPP656. To meet the input requirements of the XFP module, you must increase the differential swing voltage of the MGT transmitter outputs. Set TXDAT_TAP_DAC to 800mV.
10.6 The SMAs

The easiest way to connect two RocketIO channels is through the use of SMA cables. The SMA connections on the DN8000K10PCIe were designed to operate at the full 11Gb potential of the Virtex 4 RocketIO transceivers.
The loopback pair AP26 and AP25 can be used to test your Virtex 4 fabric design. You may want to get the loopback pair working before attempting to transmit high data rates over a cable system.
11 PCI Express interface

11.1 PCI edge connector

11.2 The Genesys GL9714

This section applies to the 8-lane version of the DN8000K10PCIE only.

The Genesys phy chip takes care of the serialization/deserialization of the PCI express interface. It also recovers a clock and accomplishes receive detect. The Dini Group does not supply a PCI express FPGA core. You must implement this in the FPGA fabric, or acquire one from an IP vendor. One such vendor is ASIC Architect

http://www.asic-architectinc.com/

Each genesys GL9714 is connected to four of the eight PCI express lanes. Each lane is sent to the FPGA A over the signals

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>PCIE lane</th>
<th>Direction</th>
<th>Synchronous Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIeRXA[0-7]</td>
<td>Lane 0</td>
<td>Receive</td>
<td>PCIe_PCLK</td>
</tr>
<tr>
<td>PCIeRXB[0-7]</td>
<td>Lane 1</td>
<td>Receive</td>
<td>PCIe_PCLK</td>
</tr>
<tr>
<td>PCIeRXC[0-7]</td>
<td>Lane 2</td>
<td>Receive</td>
<td>PCIe_PCLK</td>
</tr>
<tr>
<td>PCIeRXD[0-7]</td>
<td>Lane 3</td>
<td>Receive</td>
<td>PCIe_PCLK</td>
</tr>
<tr>
<td>PCIe2RXA[0-7]</td>
<td>Lane 4</td>
<td>Receive</td>
<td>PCIe2_PCLK</td>
</tr>
<tr>
<td>PCIe2RXB[0-7]</td>
<td>Lane 5</td>
<td>Receive</td>
<td>PCIe2_PCLK</td>
</tr>
<tr>
<td>PCIe2RXC[0-7]</td>
<td>Lane 6</td>
<td>Receive</td>
<td>PCIe2_PCLK</td>
</tr>
<tr>
<td>PCIe2RXD[0-7]</td>
<td>Lane 7</td>
<td>Receive</td>
<td>PCIe2_PCLK</td>
</tr>
</tbody>
</table>
The GL9714 provides a 250Mhz clock, PCLK, to the FPGA.

Revision 1 Boards: The signal PCIE2_PCLK is not connected to a FPGA “GC” clock input pin, and is not suitable for use as a clock. Your board must be reworked to connect PCIE2_PCLK to a “GC” pin on the FPGA. When this rework is complete, the PCIE2_PCLK signal will connect to pin AP22 on FPGA A.

The clock source of the GL9714 comes externally from the 100 MHz PCI express REFCLK. The GL9714 uses the clock source with its PLL to generate the 2.5 GHz bit rate for transmitting and receiving. The GL9714 also drives a clock output for the synchronization of MAC interface in the FPGA. The GL9714 supports four modes:
- 8-bit, 250Mhz, 4 lanes
- 10-bit, 250Mhz, 4 lanes
- 16-bit, 125Mhz, 2 lanes
- 20-bit, 125Mhz, 2 lanes

The DN8000K10PCIE-8 can only be used in the first mode. This means that the interface between the GL9714 and the FPGA can only run at 250Mhz.

The Genesys GL9714 has four power states. The default state when the FPGA A is not configured, or does not implement a PCI express controller is full-powered mode. It is required that the mode is changed to power-down to reset the PHY. See the datasheet.

11.2.1 Clocking Methods

The following diagram shows a clocking method validated on the DN8000K10PCIE8. This method is suitable for 8-lane operation. Since this method uses the PCIE2_PCLK signal, revision 1 boards require a rework wire to use this method.
The interface has been validated in 4-lane operation using the following clocking method. The PCLK signal is sent to a BUFG, whose output is fed to a DCM. The DCM settings are as follows:

- **CLKDV_DIVIDE** = 2.0;
- **CLKOUT_PHASE_SHIFT** = "FIXED";
- **PHASE_SHIFT** = -125;

The CLKDV output of this DCM is sent through another BUFG. The output of this is used to clock IDDR and ODDR registers on the input and output signals to the GL9714.
This method is convenient if your PCI express core has a 125MHz, 16-bit interface.

11.3 The Phillips PX1011A
This section applies to the 1-Lane DN8000K10PCIE only.

The Phillips PX1011A is a 1x PCI Express PHY chip, providing an 8-bit, 250MHz interface to FPGA A. Since this chip does nothing more than serializing and 8B/10B encoding, the PCI express protocol will have to be implemented in the logic of FPGA A.

The PCI express core used at Dini Group for testing purposes is the Xilinx 1-lane PCI express core. Contact Xilinx.

11.4 Virtex 4 FPGA Communication
11.5 PCI clocking
The PHY receives a 100MHz clock from the PCIexpress edge connector. This clock is used as a reference to capture the 2.5Gbs PCI express signal. The PCIE_PCLK (and pcie2_pelk on the 8-lane) signal is synchronous to both the RX and TX signals of the parallel interface.

11.6 PCI Power
In some applications, the DN8000K10PCIE can draw its power from the PCI Express slot. The PCI express specification guarantees that the motherboard provide 25W of 12V power for the DN8000K10PCIE to use (Most motherboards provide well in excess of this amount, supplying the power for PCI cards directly from the ATX power supply). In high power applications exceeding 25W, you may need to connect the Auxiliary power connector (P3).
The Aux. Power connector is a standard IDE hard drive power connector and should be supplied by the ATX power supply that is in your computer case. Aux power connector 12V is shorted to the PCI slot 12V. The power supply driving the PCI slot and IDE power cable must be the same unit.

12 FPGA System monitor/ADC

The System Monitor and ADC functions of the Virtex 4 FPGA are no longer supported by Xilinx. The most important responsibility of the System Monitor, temperature sensing, has been moved to the configuration circuitry. The DN8000K10PCIE will automatically monitor and prevent thermal overload in the three Virtex 4 FPGAs. No user action is required.

13 Mechanical

The dimensions of the PWB are 312mm long by 135mm tall, plus a 8.25mm PCI edge connector. This is taller than the PCI specification allows, although the DN8000K10PCIE fits easily inside most ATX computer cases.
The topside clearance with the factory installed active heatsinks is 23mm. This leaves just enough room for airflow if the adjacent PCI slot is left unoccupied, or the DN8000K10PCIE is the last PCI card in the row. The default heatsinks can be removed if you do not require high-power operation, allowing the DN8000K10PCIE to meet the PCI height restriction. The backside clearance is 3.5mm. This exceeds the PCI specification by 1.5mm.

If it is required that the DN8000K10PCIE use only one PCI slot, the fan can be removed from the active heatsink assembly, as long as sufficient airflow is provided. Most PC cases do not provide sufficient airflow for high-power applications.
Chapter 5: Introduction to the Reference Design

This chapter introduces the DN8000K10PCIE Reference Design, including information on what the reference design does, how to build it from the source files, and how to modify it for another application.

1 Exploring the Reference Design

1.1 What is the Reference Design?

The reference design is a fully functional Virtex 4 FPGA design capable of demonstrating most of the features available on the DN8000K10PCIE. Features exercised in the reference design include:

- Access to the DDR2 SDRAM Modules At 200Mhz
- UART Communication
- FPGA Interconnect
- Interaction with the Configuration FPGA and MCU
- Use of Embedded PowerPC Processors (eventually)
- Memory Mapped Access Between PPC And User Design (eventually)
- Access to external LEDs
- Communication via Rocket I/O Transceivers
- Instantiation of Daughter Card Test Headers
- USB memory map to DDR2 memory.
- Pin-multiplexed FPGA interconnect using LVDS at 650Mbs per signal pair
All source code for the reference design is included on the CD and may be used freely in customer development. Precompiled bit files for the most common stuffing options are also included and can be used to verify board functionality before beginning development. A build utility, described in the section Compiling The Reference Design, can be used to generate new bit files, or to generate bit files for less common configurations of the DN8000K10PCIE.

The reference design was created using

Here are the default main.txt file lines.

```
verbose level: 2
sanity check: y
clock frequency: A N 4 M 16 // 100 MHz – not used for PCI/MB test,
header test uses this clk
clock frequency: B N 2 M 28 // 200 MHz
clock frequency: D N 2 M 25 // 200 MHz
clock frequency: 1 N 2 M 25 // 312 MHz
clock frequency: 2 N 2 M 25 // 312 MHz
```

2 Reference Design Memory Map

The Dini Group reference design memory maps the main features of the DN8000K10PCIE to the host interfaces: PCI, USB, and RS232.

The Main Bus interface is used to access the reference design memory map. Addresses are 32-bits. Each address contains a 32-bit word.

<table>
<thead>
<tr>
<th>FPGA A</th>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x08000002</td>
<td>IDCODE</td>
<td>0x05000121</td>
</tr>
<tr>
<td>0x08000004</td>
<td>INTERCONTYPE</td>
<td>0x34561111</td>
</tr>
<tr>
<td>0x08000006</td>
<td>RwReg</td>
<td>Scratch Register for testing</td>
</tr>
<tr>
<td>0x08000010</td>
<td>LED_OE</td>
<td>Controls LED output enables</td>
</tr>
<tr>
<td>0x08000011</td>
<td>LED_OUT</td>
<td>Controls LED outputs</td>
</tr>
<tr>
<td>0x08100001</td>
<td>CLK_COUNTER</td>
<td>Contains contents of ACLK counter</td>
</tr>
<tr>
<td>0x08100002</td>
<td>CLK_COUNTER</td>
<td>Contains contents of BCLK counter</td>
</tr>
<tr>
<td>0x08100003</td>
<td>CLK_COUNTER</td>
<td>Contains contents of DCLK counter</td>
</tr>
<tr>
<td>0x08100004</td>
<td>CLK_COUNTER</td>
<td>Contains contents of SYSCLK counter</td>
</tr>
<tr>
<td>0x0C000000</td>
<td>ABP0_OUT</td>
<td>W; the output state of FPGA IOs connected to the ABP0 interconnect bus</td>
</tr>
<tr>
<td>0x0C000004</td>
<td>ABP0 OE</td>
<td>W; The output enable of each FPGA</td>
</tr>
</tbody>
</table>
INTRODUCTION TO THE SOFTWARE TOOLS

IO on the ABP0 interconnect bus.

The input state of each FPGA IO on the ABP0 interconnect bus.

“ABP0” (ascii)

W; ABP1 IO output values

W; Output enable of ABP1 bus

R; ABP1 input values

“ABP1” (ascii)

XX can be 0-21 hex. Output status of IOs on bus XX.

XX can be 0-21 hex. OE status of IOs

XX can be 0-21 hex. The input values

The name of the bus XX (schematic)

Mapped to DDR2 SODIMM…

…interface

upper address bits for DDR2 interface

number of bits in DDR2HIADDR

The size of the DDR2 module.

Current IDELAY values of DDR2…

…interface

XX can be 0-21 hex. Output status of IOs on bus XX.

XX can be 0-21 hex. OE status of IOs

XX can be 0-21 hex. The input values

The name of the bus XX (schematic)

Mapped to DDR2 SODIMM…

… interface
2.1 Using the Reference Design

2.1.1 Built-In RocketIO test
From the AETest main menu, select option 4, MGT Menu. The MGT test sends a repeating test pattern out all of the RocketIO transmit pairs, and compares the input of each RocketIO channel to that pattern. To run the test, you must loop back each RocketIO pair.
INTRODUCTION TO THE SOFTWARE TOOLS

You can easily loopback the SMA channels by connecting the RX and TX connectors of each MGT pair together with an SMA cable. The SFP modules can be tested with an LR loopback attenuator.

Option 5 of the MGT menu allows you to invert the polarity of one of the SFP channels. For the test to pass, this must be done, since SFP2 is received with inverted polarity.

The MGT tiles are connected as follows

<table>
<thead>
<tr>
<th>COL0, TILE0</th>
<th>MGT A</th>
<th>MGT B</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSE 1</td>
<td>QSE 1</td>
<td></td>
</tr>
<tr>
<td>COL0, TILE1</td>
<td>QSE 1</td>
<td></td>
</tr>
<tr>
<td>QSE 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL0, TILE2</td>
<td>SFP 1 (XFP REFCLK1)</td>
<td></td>
</tr>
<tr>
<td>XFP 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL0, TILE3</td>
<td>LOOPBACK</td>
<td></td>
</tr>
<tr>
<td>SMA J22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL1, TILE0</td>
<td>QSE 0</td>
<td></td>
</tr>
<tr>
<td>QSE 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL1, TILE1</td>
<td>SMA J31</td>
<td></td>
</tr>
<tr>
<td>SMA J25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL1, TILE2</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>SMA J17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL1, TILE3</td>
<td>XFP 2</td>
<td></td>
</tr>
<tr>
<td>SFP 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFCLK2 – 250MHz EPSON
INTRODUCTION TO THE SOFTWARE TOOLS

REFCLK1 – ICS 84020 Synthesizer
INTRODUCTION TO THE SOFTWARE TOOLS

FPGA_A: MAIN MENU

a) Run Full Test Suite
b) Test Registers
c) Test SRAM
d) Test DDR
e) Test Interconnect
f) Write Memory Location
g) Read Memory Location
h) Display Memory in 8 DWORDS per Line Format
i) Fill Memory with specified DWORD pattern
j) Toggle Mem Owner: INTERNAL (User)
k) Interconnect Test Menu

q) Quit

3 Memory Mapped Data flow

All memory mapped transactions in the reference design occur over the MB bus. This 40-signal bus connects to all Virtex 4 FPGAs and to the Spartan II configuration FPGA. The Configuration circuit (Spartan 2) is the master of the bus. All access to the MB bus (reads and writes) is initiated by the Spartan II FPGA when the reference design is in use.

![Memory Mapped Data flow Diagram]

All transfers are synchronous to the USB_CLK (or SYS_CLK) signal. This clock is fixed at 48Mhz, and cannot be changed by the user. This clock is LVCMOS, single-ended. When the ALE signal is asserted by the configuration circuit, the slave device on the bus (the FPGA) is...
required to register the data on the on AD bus. This is the “main bus address”. All future transfers over the main bus are said to be at this address, until a new address is latched. On a later clock cycle, the master may assert the “RD” signal. Some time after this, (within 256 clock cycles), the FPGA should assert DONE for one clock cycle. On this cycle, the master (Spartan) will register the data on the AD bus, and that will be the read data. If DONE is not asserted, then a timeout will be recorded and the transaction cancelled.

Here is a write transaction:

![Diagram of write transaction]

When the “WR” signal is asserted by the Spartan, the FPGA should register the data on the AD bus. (Note that by convention, FPGAs on the main bus are assigned the address range corresponding to one value of the highest nibble of the address. Hex addresses 0XXXXXXXX are FPGA A, 1XXXXXXX are FPGA B and 2XXXXXXX are fpga C.)

Some time after this, the FPGA should assert the DONE signal. This will allow the Spartan to begin more transactions. The FPGA may delay this for up to 256 clock cycles before a timeout is recorded and the transaction is cancelled.

Main bus can be controlled from the USB Controller program. (Read and write single addresses, or to/from files) It can also be written from the main.txt configuration method. The main.txt syntax is

MAIN BUS 0x<addr> 0x<data>

Where <addr> and <data> are 8-digit (32-bit) hexadecimal numbers.

3.1 Compiling the Reference Design

This section deals with the source code to the Reference Design, which can be found on the CD-ROM. All file references are with respect to the root directory of the Reference Design source code (/source/FPGA). Files that are specific to the DN8000K10PCIE design are found...
in the DN8000K10PCIE subdirectory, whereas general application code is found in the common subdirectory.

3.1.1 The Xilinx Embedded Development Kit (EDK)
EDK is not used.

3.1.2 Xilinx XST
The Dini Group uses XST software for design synthesis. The XST projects for each of the 3 FPGAs on the DN8000K10PCIe can be found at ‘buildxst/*.xst’. These projects have been compiled using XST version 9.1.

3.1.3 Xilinx ISE
The Xilinx project manager program is not used to compile the reference design. Instead, each of the ISE software components are called separately. It is possible to create a project file for the reference design. In this case, the top-level .edif file and the correct UCF file for the FPGA you would like to compile will have to be added to the project. The correct type and package FPGA will have to be selected in the project options.

3.1.4 The Build Utility: Make.bat
The Build Utility is found at ‘DN8000K10PCIE/build/make.bat’. This batch file is used to set system parameters to the desired configuration (i.e. V4FX60 vs. V4FX100, etc.), and to invoke all of the above tools from the command line. Instructions for invoking the batch file can be found by viewing the batch file with a text editor. Additional information about using the batch file to build the reference design is found below. Taking the reference design through all of the various tools for several FPGA’s can be very tedious and time consuming- this batch file can do it all in one command!

The command line utility “Make.bat” is an MS-DOS batch file compatible with Windows 2000 and later operating systems. Make.bat should be run from the command line, with command line parameters. It should not be double clicked from the windows environment. A command prompt shortcut is provided in the same directory as Make.bat, and can be double clicked to open a command prompt window with the proper working directory.

4 Getting More Information

4.1 Printed Documentation
The printed documentation, as mentioned previously, takes the form of a Virtex 4 datasheet and a DN8000K10PCIE User Guide.

4.2 Electronic Documentation
Multiple documents and datasheets have been included on the CD.
4.3 Support
Email support is recommended. Email support@dinigroup.com for technical questions. Email sales@dinigroup.com for sales questions.

Before contacting support, you should minimally make the following checks for common errors:

- Make sure that the clock your design uses is running. Output the clock to a probe-able IO pin and check it with an oscilloscope.
- Check the pinout in your constraint file against the provided UCF files and the board netlist on the user CD.
- Check the .PAR report file to make sure that 100% of your IOBs used have LOC constraints. There is never a reason to have fewer than 100% of IOs located.
- Use the .PAD report to make sure your constraints were applied correctly. Some situations may cause ISE to reject your constraints.
- If you are having problems with Main Bus, make sure that only one FPGA is driving Main Bus at a time. Make sure that “Enable USB communication” is not selected in the USB Controller program (default). This setting can interfere with MB[32-37]
- Make sure that the "Unused IOBs" option in the ISE settings is set to "Float." This may be required for correct operation.
- When using the SD daughtercard, make sure you are using the OE signals on the active buffers.

4.4 Online Documentation
There is a public access site that can be found on the Dini Group web site at http://www.dinigroup.com/.
Ordering Information

Part Number
DN8000K10PCIE

1 FPGA Options

1.1 FPGA A:

Select an FPGA part to be supplied in the A position. This FPGA is connected to the PCI bus, an expansion header, and can source global clocks. The –12 speed grade is required for full speed operation (1Gbs/pair) of the interconnect between FPGAs.

NONE
LX100 –10 –11 –12
LX160 –10 –11 –12
LX200 –10 –11

1.2 FPGA B:

Select an FPGA part to be supplied in the B position. This FPGA is connected to an expansion header, a memory module socket, and can source global clocks. The –12 speed grade is required for full speed operation (1Gbs/pair) of the interconnect between FPGAs.

NONE
LX100 –10 –11 –12
LX160 –10 –11 -12
LX200 –10 –11

1.3 FPGA C:

Select an FPGA part to be supplied in the C position. This fpga is connected to a memory module socket. This FPGA is required to provide Multi-Gigabit serial communication. In order to achieve 10 Gbs selectIO operation, the –12 speed grade is required.

NONE

FX40 –10 –11 -11x –12 (This option makes the 200-pin SODIMM memory socket, one SMA channel, four QSE cable channels, and one optical module socket unusable)

FX60 –10 – 11 -11x –12 (This option makes four channels of QSE cable unusable)

FX100 –10 –11 -11x –12

2 Multi-Gigabit Serial Options

2.1 Serial Clock Crystals

If you need to interface to a specific Multi-gigabit serial IO protocol, you may want to specify a compatible crystal.

Chose one of the following frequencies (in Mhz):

<table>
<thead>
<tr>
<th>Frequency (in MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8304</td>
</tr>
<tr>
<td>12.890</td>
</tr>
<tr>
<td>14.318</td>
</tr>
<tr>
<td>16.000</td>
</tr>
<tr>
<td>21.477</td>
</tr>
<tr>
<td>24.576</td>
</tr>
<tr>
<td>25.000</td>
</tr>
</tbody>
</table>

The default option is 25.000 Mhz.

2.2 Module Sockets
XFP and SFP Modules provide 1.0 – 10.5 Gb optical serial communications to FPGA C. DN8000K10PCIE has two optical ports, each can be installed with either an SFP or XFP connector. XFP modules operate only in the 9.5-10.5 Gb/s range. Available SFP modules operate between 1-4.25 Gb/s. For 10Gb operation, a –12 speed grade FX part may be required. These parts may not yet be available before.

If you have the FPGA C option, you may select one of the following options.

OPTICAL – SFP, SFP (default)

OPTICAL – XFP, XFP

OPTICAL – SFP, XFP

3 Other Options

3.1 3.3 V Headers
The DN8000K10PCIE can be configured to accept 3.3V input and output on a subset of expansion header pins. These IOs are not voltage selectable by the software. You must specify on your order that you would like this option.

Select any of the following options. The default option is all 2.5V header IO.

3.3V Header A

3.3V Header B

3.2 12V Power
Daughtercard supply voltages +12V and –12V are, by default, disabled by jumpers R411 (Header A +12V), R412 (Header B +12V), R414 (Header A –12V), R413 (Header B –12V). This default setting reduces the chance of damage to the Virtex 4 FPGA IO buffers due to user error or careless use of probes. Specify this option to have the jumpers factory installed.

4 Optional Equipment

The Dinigroup supplies standard daughtercards and memory modules that you can use with the DN8000K10PCIE.

• SE card – 80 signals on .1” pitch headers.
• Mictor Card – 5 Mictor38 headers for use with logic analyzers.

• SRAM module for use in the 200-pin SODIMM sockets of the DN8000K10PCIE. QDRII, 300Mhz 64x2Mb

• SRAM module for use in the 200-pin SODIMM socket. 64x2Mb Standard SDR SRAM. Pipelined or Flowthrough, NoBL available

• RLDRAM module for use in the 200-pin SODIMM socket. 64x16Mb, 300Mhz DDRII

• Flash module for use in the 200-pin SODIMM header.

• Mictor module for use in the 200-pin SODIMM header. (2 Mictor 38 connectors for use with logic analyzer)
The Dini Group can optionally provide the following accessories.
• DN3k10SD Daughter card (Provides tenth inch pitch test points)

• DNMictor Daughter card (Provides 5 Mictor connectors compatible with logic analyzers)

• Memory modules for use in the DN8000K10PCIE DDR2 SODIMM sockets A and B. (Available Q4 ’05)
 - QDRII SRAM 64x1Mb, 300Mhz
 - Flash memory 32x4Mb, 2x4Mb serial flash
 - Reduced Latency DRAM (RLDRAM) 64x8Mb, 300Mhz
 - Standard SRAM, 64x2M (Select ZBT, Pipelined, Flowthrogh)
 - Test connection module (with two Mictor38)

You may also want to obtain from a third party vendor

• 200-pin DDR2 SODIMM(s)

• SFP modules (for Gigabit Ethernet, infiniband, …)
 IBM part 13N1796 from insight.com $180

• XFP modules
 Intel part TXN181070850X18 from insight.com $692
 XFP heatsink/clip – Tyco part 1542992-2
 -5.2V bench supply for powering ECL-based XFP modules (if required)

• Xilinx Parallel IV cable

• LVPECL oscillators for RocketIO MGT clocking. (The DN8000K10PCIE is supplied with a 250Mhz oscillator)
 Epson Part EG-2102CA PECL

Xilinx Chipscope for embedded logic analyzer functionality.